📄 rc318.fld
字号:
RC318 !short name
115-25-3 !CAS number
octafluorocyclobutane !full name
cyclo-C4F8 !chemical formula
FC-C318 !synonym
200.0312 !molecular weight [g/mol]
233.35 !triple point temperature [K]
267.175 !normal boiling point [K]
388.38 !critical temperature [K]
2777.5 !critical pressure [kPa]
3.09938 !critical density [mol/L]
0.3553 !acentric factor
0.0 !dipole moment [Debye]
IIR !default reference state
6.1 !version number
! compiled by M. McLinden, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 05-29-97 MM, original version
! 07-02-97 EWL, add Bender EOS from Platzer
! 10-24-97 MM, read in f_int term in Eucken correlation in ECS method for t.c.
! change reference fluid EOS for ECS-transport from BWR to FEQ
! 05-03-02 MLH, added fits for thermal conductivity and viscosity.
#EOS !equation of state specification
FEQ Helmholtz equation of state for R-C318 of Platzer et al. (1990).
?LITERATURE REFERENCE \
?Platzer, B., Polt, A., and Maurer, G.,
? "Thermophysical properties of refrigerants,"
? Berlin: Springer-Verlag, 1990.\
?\
!end of info section
233.35 !lower temperature limit [K]
623.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
8.6452 !maximum density [mol/L]
CPP !pointer to Cp0 model
200.04 !molecular weight [g/mol]
233.35 !triple point temperature [K]
19.461 !pressure at triple point [kPa]
8.6452 !density at triple point [mol/L]
267.175 !normal boiling point temperature [K]
0.3553 !acentric factor
388.38 2777.5 3.09938 !Tc [K], pc [kPa], rhoc [mol/L]
388.38 3.09938 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
22 5 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
-0.104729119796d+1 3.000 0.00 0 0.0 !a(i),t(i),d(i),l(i),g(i)
0.138034128822d+1 4.000 0.00 0 0.0
-0.333625769594d+0 5.000 0.00 0 0.0
0.109415569278d+1 0.000 1.00 0 0.0
-0.268265237178d+1 1.000 1.00 0 0.0
0.173403063905d+1 2.000 1.00 0 0.0
-0.163611246876d+1 3.000 1.00 0 0.0
0.304834499143d+0 4.000 1.00 0 0.0
0.102771551787d+0 0.000 2.00 0 0.0
-0.232367895587d-1 1.000 2.00 0 0.0
0.166151957803d+0 2.000 2.00 0 0.0
-0.250103914479d-1 0.000 3.00 0 0.0
0.935680977639d-1 1.000 3.00 0 0.0
0.431929127445d-1 0.000 4.00 0 0.0
-0.133439845861d+0 1.000 4.00 0 0.0
0.255416632165d-1 1.000 5.00 0 0.0
0.104729119796d+1 3.000 0.00 2 0.99943992d0
-0.138034128822d+1 4.000 0.00 2 0.99943992d0
0.333625769594d+0 5.000 0.00 2 0.99943992d0
-0.510485781618d+0 3.000 2.00 2 0.99943992d0
0.181840728111d+1 4.000 2.00 2 0.99943992d0
-0.138530893970d+1 5.000 2.00 2 0.99943992d0
#AUX !auxiliary model specification
CPP ideal gas heat capacity function
?LITERATURE REFERENCE \
?Platzer, B., Polt, A., and Maurer, G.,
? "Thermophysical properties of refrigerants,"
? Berlin: Springer-Verlag, 1990.\
?\
!end of info section
233.35 !lower temperature limit [K]
623.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 200.04 !reducing parameters for T, Cp0
4 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
0.12100000d+0 0.0
0.29030000d-2 1.0
-0.25327000d-5 2.0
0.77191000d-9 3.0
#TRN !transport model specification
ECS Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?
?Perkins, R., Cusco, L., Howley, J., Laesecke, A., Matthes, S. and
? Ramires, M.L.V. (2001)."Thermal conductivities of alternatives to CFC-11 for
? foam insulation". J. Chem. Eng. Data, 46(2):428-432.
?
?Tsvetkov, O. B., Laptev, Yu. A., and Vasilkov, A. I.,"The Results of Measurements of
? Thermal Conductivity of Gaseous Freons with the Heating Wire Method",(1977).
? Mashinyi i Apparatyi Cholodilnoj, Kriogennoh Techniki i Kondizionirovaniyi
? Vosducha, Collect No. 2, 54-6, Leningradskij Tech. Inst.
?
?Kessel'man, P. M.,Porichanskii, E. G., Romanov, V. K., Ponomareva, O. P.,
? Svetlichnyi, P. I.,Zheleznyi, V. P., Slyusarev, V. V., and Karbanov, E. M.(1977).
? "Complex study of the thermophysical properties of freon c-318",Teplofiz.
? Svoistva Veshchestv Mater.,No. 11, 4-10.
?
?Vojtenko, A. K. (1980)."Investigation of the Thermal Conductivity of some Freons
? in the Wide Range of Parameters Including the Critical Region",Ph. D. Thesis,
? Groz. Neft. Inst., Grozny, USSR.
?
?Average absolute deviations of the fit from the experimental data were:\
? Perkins: 2.89%; Tsvetkov: 8.14%; Kessel'man: 2.23%; Vojtenko: 4.80%;
? Overall: 3.68%\
?\
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?Geller, V. Z., Karabanov, E. M., Gunchuk, B. V., Zakharzhevskiy, V. Y.,
? and Lapardin, N. I.,(1976) "The Investigation of the Viscosity Coefficient of Some
? of the Liquid Gases About the Saturated Line", Gasovaya Promyishlennost,No. 3,32.
?
?Karbanov, E. M. (1978)."Investigation of the Dynamic Viscosity of Some Freons of
? Ethane Type and of the Bromide Freons", Ph.D. Thesis, Groz. Neft. Inst., Grozny, USSR.
?
?Kessel'man, P. M., Porichanskii, E. G., Romanov, V. K.; Ponomareva, O. P.,
? Svetlichnyi, P. I.,Zheleznyi, V. P., Slyusarev, V. V., and Karbanov, E. M. (1977).
? "Complex study of the thermophysical properties of freon c-318",Teplofiz.
? Svoistva Veshchestv Mater.,No. 11, 4-10.
?
?Kamien, C.Z., and Witzell, O.W. (1959). "Effect of pressure and temperature on
? the viscosity of refrigerants in the vapor phase", ASHRAE Trans. 65, 663-674.
?
?Average absolute deviations of the fit from the experimental data were:\
? Geller: 3.88%; Karbanov: 1.99%; Kessel'man: 4.06%; Kamien: 2.81%;
? Overall: 3.49%\
?\
?The Lennard-Jones parameters are estimated.\
?
!end of info section
233.35 !lower temperature limit [K]
623.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
8.6452 !maximum density [mol/L]
FEQ propane.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5947 !Lennard-Jones coefficient sigma [nm] for ECS method
299.76 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.35697d-03 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
-1.11635d-07 1.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
2 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.21141d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-3.37573d-02 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
2 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
0.151745d+01 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-0.144756d+00 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
TK6 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK6 simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
233.35 !lower temperature limit [K]
500.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
9.20 !maximum density [mol/L] (limit of ECS-thermo fit)
9 0 0 0 !# terms: CO2-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d+00 !gnu (universal exponent)
1.239d+00 !gamma (universal exponent)
1.03d+00 !R0 (universal amplitude)
0.063d+00 !z (universal exponent--not used for t.c., only viscosity)
1.00d+00 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
1.94d-10 !xi0 (amplitude) [m]
0.0496d+00 !gam0 (amplitude) [-]
0.37204d-09 !qd_inverse (modified effective cutoff parameter) [m] fit to data
582.57d+00 !tref (reference temperature)=1.5*Tc [K]
#STN !surface tension specification
ST1 surface tension model; fit of data from Calado et al. (1978).
?LITERATURE REFERENCE \
?fit to data of: \
?Calado, J.C.G., McLure, I.A., and Soares, V.A.M.,
? "Surface tension for octafluorocyclobutane, n-butane and their mixtures
? from 233 K to 254 K, and vapour pressure, excess gibbs function and excess
? volume for the mixture at 233 K,"
? Fluid Phase Equilibria, 2:199-213, 1978.
?\
!end of info section
233.0 !lower temperature limit [K]
388.38 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
388.37 !critical temperature used in fit (dummy)
0.05145 1.26 !sigma0 and n
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -