📄 r125.fld
字号:
0.109925047828d+00 1.00 3. 0
-0.993099630896d-01 3.00 3. 0
-0.104601585904d-01 1.00 4. 0
-0.769998709731d-01 2.00 4. 0
0.149829594347d-01 1.00 5. 0
0.166640927925d-01 2.00 5. 0
-0.181492321758d-02 1.00 6. 0
-0.853933823720d-01 1.00 0. 2
0.133260499658d+00 2.00 0. 2
0.410983574575d+00 1.00 2. 2
-0.452988926330d+00 2.00 2. 2
#AUX !auxiliary model specification
CP2 ideal gas heat capacity function of Piao and Noguchi (1998).
?LITERATURE REFERENCE \
?Piao, C.-C. and Noguchi, M.,
? "An international standard equation of state for the thermodynamic
? properties of HFC-125 (pentafluoroethane),"
? J. Phys. Chem. Ref. Data, 27(4):775-806, 1998.
?\
!end of info section
150.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 8.314471 !reducing parameters for T, Cp0
3 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
0.439870d+01 0.00 !c(i), power of T/Tc
0.242728d-01 1.00
-0.409900d-05 2.00
@EOS !equation of state specification
BWR MBWR equation of state for R-125 of Outcalt and McLinden (1995).
?LITERATURE REFERENCE \
?Outcalt, S.L. and McLinden, M.O.,
? "Equations of state for the thermodynamic properties of R32 (difluoromethane)
? and R125 (pentafluoroethane),"
? Int. J. Thermophysics, 16:79-89, 1995.\
?\
?ABSTRACT \
?Thermodynamic properties of difluoromethane (R32) and pentafluoroethane (R125)
? are expressed in terms of 32-term modified Benedict-Webb-Rubin (MBWR)
? equations of state. For each refrigerant, coefficients are reported for the
? MBWR equation and for ancillary equations used to fit the ideal-gas heat
? capacity and the coexisting densities and pressure along the saturation
? boundary. The MBWR coefficients were determined with a multiproperty fit that
? used the following types of experimental data: PVT; isochoric, isobaric, and
? saturated-liquid heat capacities; second virial coefficients; and properties
? at coexistence. The respective equations of state accurately represent
? experimental data from 160 to 393 K and pressures to 35 MPa for R32 and from
? 174 to 448 K and pressures to 68 MPa for R125 with the exception of the
? critical regions. Both equations give reasonable results upon extrapolation
? to 500 K and 60 MPa. Comparisons between predicted and experimental values
? are presented.\
?\
!end of info section
172.52 !lower temperature limit [K]
500.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
14.10 !maximum density [mol/L]
CP3 !pointer to Cp0 model
120.022 !molecular weight [g/mol]
172.52 !triple point temperature [K]
2.921 !pressure at triple point [kPa]
14.095 !density at triple point (max density)
225.006 !normal boiling point temperature [K]
0.30349 !acentric factor
339.33 3629. 4.75996 !Tc [K], pc [kPa], rhoc [mol/L]
339.33 4.75996 !reducing parameters [K, mol/L]
4.75996 !gamma
0.08314471 !gas constant [L-bar/mol-K]
32 1 !Nterm, Ncoeff per term
-0.523369607050d-01 0.378761878904d+01 -0.807152818990d+02
0.115654605248d+05 -0.152175619161d+07 0.597541484451d-02
-0.145990589966d+01 -0.992338995652d+03 -0.399180535687d+06
-0.722591037504d-03 0.358108080969d+00 -0.108627994573d+03
0.229821626570d-01 0.149537670449d+01 0.911199833952d+03
-0.254479949722d+00 0.102433894096d-01 -0.645583164735d+01
0.218649963191d+00 0.114748721552d+07 -0.118389825386d+09
0.306539775027d+05 0.542870289406d+09 0.903502635609d+03
-0.153646507435d+06 0.314617903718d+01 0.429297546671d+06
0.109652021582d+00 -0.329350271819d+02 -0.338796950505d-03
0.384533651902d+00 -0.491511706857d+02
#AUX !auxiliary model specification
CP3 ideal gas heat capacity function of Outcalt & McLinden (1995).
?LITERATURE REFERENCE \
?Outcalt, S.L. and McLinden, M.O.,
? "Equations of state for the thermodynamic properties of R32 (difluoromethane)
? and R125 (pentafluoroethane),"
? Int. J. Thermophysics, 16:79-89, 1995.\
?\
?N.B. The Cp0/R(Tr) function of Outcalt & McLinden has been transformed to Cp0(T).
?\
!end of info section
150.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 1.0 !reducing parameters for T, Cp0
4 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
25.87069d0 0.00 !c(i), power of T
0.2690914d0 1.00
-1.331388d-4 2.00
4.101330d-9 3.00
@EOS !equation of state specification
FES short Helmholtz equation of state for R-125 of Span (2000).
?LITERATURE REFERENCE \
?Span, R.,
? "Multiparameter Equations of State - An Accurate Source of Thermodynamic
? Property Data," Springer, Berlin, Heidelberg, New York, 2000.
?\
?The uncertainties of the equation of state are approximately 0.2% (to
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
172.52 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
14.1 !maximum density [mol/L]
CPS !pointer to Cp0 model
120.022 !molecular weight [g/mol]
172.52 !triple point temperature [K]
2.9213 !pressure at triple point [kPa]
14.096 !density at triple point [mol/L]
225.03 !normal boiling point temperature [K]
0.304 !acentric factor
339.33 3629.0 4.7599607 !Tc [K], pc [kPa], rhoc [mol/L]
339.33 4.7599607 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
12 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.112909960000E+01 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-0.283492690000E+01 1.25 1.0 0
0.299687330000E+00 1.5 1.0 0
0.872822040000E-01 0.25 3.0 0
0.263477470000E-03 0.875 7.0 0
0.610569630000E+00 2.375 1.0 1
0.900735810000E+00 2.0 2.0 1
-0.687884570000E-02 2.125 5.0 1
-0.442111860000E+00 3.5 1.0 2
-0.350414930000E-01 6.5 1.0 2
-0.126986300000E+00 4.75 4.0 2
-0.251858740000E-01 12.5 2.0 3
#AUX !auxiliary model specification
CPS ideal gas heat capacity function of Outcalt & McLinden (1995).
?LITERATURE REFERENCE \
?Outcalt, S.L. and McLinden, M.O.,
? "Equations of state for the thermodynamic properties of R32 (difluoromethane)
? and R125 (pentafluoroethane),"
? Int. J. Thermophysics, 16:79-89, 1995.\
?\
!end of info section
150.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
339.33 8.314471 !reducing parameters for T, Cp0
4 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
3.111514d0 0.00 !c(i), power of T/Tc
10.982115d0 1.00
-1.843797d0 2.00
0.019273d0 3.00
#TCX !thermal conductivity model specification
TC1 pure fluid thermal conductivity model of Perkins et al. (2001).
?LITERATURE REFERENCE \
?Unpublished; however the fit uses functional form found in:
?Marsh, K., Perkins, R., and Ramires, M.L.V.,
? "Measurement and Correlation of the Thermal Conductivity of Propane
? from 86 to 600 K at Pressures to 70 MPa,"
? submitted to J. Chem. Eng. Data, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Perkins, R.A.,(2002) personal communication. 325 Broadway, Boulder, CO
? 80305, perkins@boulder.nist.gov
?\
?LeNeindre, B. and Garrabos, Y. (1999). Measurements of the thermal
? conductivity of HFC-125 in the temperature range from 300 to
? 515 K at pressures up to 53 MPa, Int. J. Thermophys. 20:375-399.
?
?Yata, J., Hori, M., Kobayashi, K. and Minamiyama, T. (1996).
? Thermal conductivity of alternative refrigerants in the liquid phase,
? Int. J. Thermophys 17:561-571.
?
?Assael, M.J., Malamataris, N., and Karagiannidis, L. (1997).
? Measurements of the thermal conductivity of refrigerants in the
? vapor phase, Int.J. Thermophys. 18:341-352.
?
?Kim, D.S., Yang, M.H., Kim, M.S. and Ro, S.T. (1995). Thermal
? conductivities of pentafluoroethane (R125) and its mixtures
? with difluoromethane (R32) in the liquid phase, Proc. 4th
? Asian Thermophysical Properties Conference, Tokyo Japan, paper C1c1
?
?Gao, X., Yamada, T., Nagasaka, Y. and Nagashima, A (1996). The
? thermal conductivity of CFC alternatives HFC-125 and HCFC-141b in the
? liquid phase, Int. J. Thermophys. 17:279-292.
?
?Assael, M.J. and Karagiannidis, L. (1995). Measurements of the thermal
? conductivity of liquid R32, R124, R125, and R141b,Int.J. Thermohpys 16:851-65.
?
?average absolute deviations of the fit from the experimental data were:\
? Perkins:1.11%; LeNeindre: 0.67%; Yata: 1.51; Assael(1997): 1.34%
? Kim: 1.32; Gao: 1.20%; Assael (1995): 1.93%
? Overall: 0.98%\
?\
!end of info section
172.52 !lower temperature limit [K]
500.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
14.09 !maximum density [mol/L]
3 0 !# terms for dilute gas function: numerator, denominator
339.173 1.0 !reducing parameters for T, tcx
-0.867695E-02 0.00d0 !coeff, power in T
0.260357E-01 1.00d0
0.219425E-03 2.00d0
10 0 !# terms for background gas function: numerator, denominator
339.173 4.779 1.0 !reducing par for T, rho, tcx
-0.317723E-01 0.00d0 1.00d0 0.00d0 !coeff, powers of t, rho, spare for future use
0.318413E-01 1.00d0 1.00d0 0.00d0
0.602258E-01 0.00d0 2.00d0 0.00d0
-0.520772E-01 1.00d0 2.00d0 0.00d0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -