⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r32.fld

📁 一个关于物性计算的软件
💻 FLD
📖 第 1 页 / 共 2 页
字号:
500.0              !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          1.0                       !reducing parameters for T, Cp0
  4  0    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
36.79959d0         0.00                !c(i), power of T
-0.06304821d0      1.00
 3.757936d-4       2.00
-3.219812d-7       3.00


#TCX               !thermal conductivity model specification
TC1  pure fluid thermal conductivity model of Perkins et al. (2001).
?LITERATURE REFERENCE \
?Unpublished; however the fit uses the functional form found in:
?Marsh, K., Perkins, R., and Ramires, M.L.V.,
? "Measurement and Correlation of the Thermal Conductivity of Propane
? from 86 to 600 K at Pressures to 70 MPa,"
? submitted to J. Chem. Eng. Data, 2000.
?\
?
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Le Neindre, B. and Garrabos, Y. (2001) "Measurement of Thermal Conductivity
? of HFC-32 (Difluoromethane) in the temperature range from 300 to 465 K at
? pressures up to 50 MPa", Int. J. Thermophysics 22(3): 701-722.
?
?Gao, X., Iojima, H., Nagasaka, Y. and Nagashima, A. (1995). "Thermal conductivity of
? HFC-32 in the liquid phase", Paper C1c4, Proceedings 4th Asian Thermophysical
? Properties Conference, Tokyo.
?
?Ro, S.T., Kim, J.Y. and Kim, D.S. (1995). "Thermal conductivity of R32 and
? its mixture with R134a", Int. J. Thermophysics 16(5): 1193-1201.
?
?Tanaka,Y., Matsuo, S. and Taya, S. (1995)."Gaseous Thermal Conductivity of
? Difluoromethane (HFC-32), Pentafluoroethane (HFC), and Their Mixtures",
? Int. J. Thermophys 16(1):121-131.
?
?Papadaki, M. and Wakeham, W.A. (1993). "Thermal conductivity of R32 and R125 in
? the liquid phase at the saturation vapor pressure", Int. J. Thermophys. 14(6):1215-1220.
?
?Assael, M.J. and Karagiannidis, L. (1995). "Measurements of the thermal
? conductivity of liquid R32, R124, R125 and R141b", Int. J. Thermophys. 16(4):851-865.
?
?Gross, U., and Song, Y.W. (1996). "Thermal conductivities of new refrigerants
? R125 and R32 measured by the transient hot-wire method", Int. J. Thermophys. 17(3):607-619.
?
?Yata, J., Hori, M., Kobayashi, K. and Minimiyama, T. (1996). "Thermal conductivity
? of alternative refrigerants in the liquid phase", Int. J. Thermophys. 17(3):561-571.
?
?Perkins, R.A.,(2002) personal communication. 325 Broadway, Boulder, CO
? 80305, perkins@boulder.nist.gov
?\
?Average absolute deviations of the fit from the experimental data were:\
?  Le Neindre: 2.13%; Gao: 1.66%; Ro:  2.26%; Tanaka: 2.85%; Papadaki: 3.12%
?  Assael: 2.90%; Gross: 3.85%; Yata: 2.86%; Perkins: 1.69%
?  Overall:  1.93%\
?\
!end of info section
136.340            !lower temperature limit [K]
435.0              !upper temperature limit [K]
70000.0            !upper pressure limit [kPa]
27.4734            !maximum density [mol/L]
3   0              !# terms for dilute gas function:  numerator, denominator
351.255    1.0     !reducing parameters for T, tcx
 0.106548d-01   0.00d0      !coeff, power in T
-0.194174d-01   1.00d0
 0.254295d-01   2.00d0
10  0                       !# terms for background gas function:  numerator, denominator
351.255  8.1500846    1.0   !reducing par for T, rho, tcx
 0.221878d-01    0.00d0   1.00d0   0.00d0   !coeff, powers of t, rho, spare for future use
-0.215336d-01    1.00d0   1.00d0   0.00d0
 0.283523d+00    0.00d0   2.00d0   0.00d0
-0.169164d+00    1.00d0   2.00d0   0.00d0
-0.297237d+00    0.00d0   3.00d0   0.00d0
 0.191614d+00    1.00d0   3.00d0   0.00d0
 0.105727d+00    0.00d0   4.00d0   0.00d0
-0.665397d-01    1.00d0   4.00d0   0.00d0
-0.123172d-01    0.00d0   5.00d0   0.00d0
 0.766378d-02    1.00d0   5.00d0   0.00d0
TK6                       !pointer to critical enhancement auxiliary function


@TRN               !transport model specification
ECS  Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Le Neindre, B. and Garrabos, Y. (2001) "Measurement of Thermal Conductivity
? of HFC-32 (Difluoromethane) in the temperature range from 300 to 465 K at
? pressures up to 50 MPa", Int. J. Thermophysics 22(3): 701-722.
?
?Gao, X., Iojima, H., Nagasaka, Y. and Nagashima, A. (1995). "Thermal conductivity of
? HFC-32 in the liquid phase", Paper C1c4, Proceedings 4th Asian Thermophysical
? Properties Conference, Tokyo.
?
?Perkins, R.A.,(2002) personal communication. 325 Broadway, Boulder, CO
? 80305, perkins@boulder.nist.gov
?
?average absolute deviations of the fit from the experimental data were:\
?  LeNeindre:  2.75%; Gao:  3.92%; Perkins: 4.81%  Overall:  4.23%\
?\
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?
?Laesecke, A., Luddecke, T.O.D., Hafer, R.F. and Morris, D.J. (1999).
? Viscosity measurements of ammonia, R32, and R134a. Vapor buoyancy
? and radial acceleration in capillary viscometers, Int. J. Thermophys. 20(2):401-434.
?
?Bivens, D.B., Yokozeki, A., Geller, V.Z., and Paulaitis, M.E. (1993).
? Transport properties and heat transfer of alternatives for R502 and R22.
? ASHRAE/NIST Refrigerants Conference, August 19-20, Gaithersburg, MD, 73-84.\
?
?Takahashi, M., Shibasaki-Kitakawa, N., Yokoyama, C., and Takahashi, S.,
? (1995). Gas viscosity of difluoromethane from 298.15 K to 423.15 K and up
? to 10 MPa. J. Chem. Eng. Data, 40:900-902.\
?
?Oliveira, C. M. B. P.; and Wakeham, W. A. (1993). "The viscosity of
? R32 and R125 at saturation",Int. J. Thermophys.14: 1131-43.
?
?Average absolute deviations of the fit from the experimental data were:\
?   Laesecke:  0.66; Bivens: 4.43%; Takahashi: 2.65%; Oliveira: 2.80%;
?   overall:  2.17%\
?\
?Lennard-Jones parameters are based on the low-density viscosity data of
? Takahashi.
?
!end of info section
136.340            !lower temperature limit [K]
435.0              !upper temperature limit [K]
70000.0            !upper pressure limit [kPa]
27.4734            !maximum density [mol/L]
FEQ propane.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.4098             !Lennard-Jones coefficient sigma [nm] for ECS method
289.65             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2  0  0                          !number of terms in f_int term in Eucken correlation, spare1, spare2
  4.36654d-04   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
  1.78134d-06   1.0   0.0   0.0
2  0  0                          !number of terms in psi (visc shape factor): poly,spare1,spare2
0.79539900      0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
 5.42658d-02    0.0   1.0   0.0
2  0  0                          !number of terms in chi (t.c. shape factor): poly1,poly2,spare
1.2942400d+0    0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
-9.24549d-02    0.0   1.0   0.0
TK6                              !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK6  simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
136.340            !lower temperature limit [K]
435.0              !upper temperature limit [K]
70000.0            !upper pressure limit [kPa]
27.4734            !maximum density [mol/L]
9  0  0  0         !# terms:  CO2-terms, spare, spare, spare
1.0     1.0     1.0      !reducing par for T, rho, tcx (mW/m-K)
 0.630d+00         !gnu (universal exponent)
 1.239d+00        !gamma (universal exponent)
 1.03d+00          !R0 (universal amplitude)
 0.063d+00         !z (universal exponent--not used for t.c., only viscosity)
 1.00d+00          !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
 1.94d-10          !xi0 (amplitude) [m]
 0.0496d+00        !gam0 (amplitude) [-]
 5.582925d-10      !qd_inverse (modified effective cutoff parameter) [m] fit to data
 526.8825d+00      !tref (reference temperature)=1.5*Tc [K]


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.
? "Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b,
? HCFC-142b, and HFC-152a,"
? Int. J. Thermophysics, 16(3):791-800, 1995.
?\
!end of info section
136.34             !lower temperature limit [K] (Okada lists 273 K, should extrapolate)
351.35             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
351.26                      !critical temperature used by Okada & Higashi (dummy)
 0.07216     1.252          !sigma0 and n


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -