📄 r114.fld
字号:
R114 !short name
76-14-2 !CAS number
1,2-dichloro-1,1,2,2-tetrafluoroethane!full name
CClF2CClF2 !chemical formula
CFC-114 !synonym
170.921 !molecular weight [g/mol]
179.0 !triple point temperature [K]
276.736 !normal boiling point [K]
418.83 !critical temperature [K]
3257.0 !critical pressure [kPa]
3.3932 !critical density [mol/L]
0.2523 !acentric factor
0.658 !dipole moment [Debye]; value from REFPROP v5.10 eval at NBP
IIR !default reference state
6.1 !version number
! compiled by E.W. Lemmon, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 07-02-97 EWL, original version
! 07-11-97 MM, add surface tension correlation
! 10-24-97 MM, read in f_int term in Eucken correlation in ECS method for t.c.
! change reference fluid EOS for ECS-transport from BWR to FEQ
! 11-13-97 MM, enter thermal conductivity shape factor fitted to data
#EOS !equation of state specification
FEQ Bender equation of state for R-114 of Platzer et al. (1990).
?LITERATURE REFERENCE \
?Platzer, B., Polt, A., and Maurer, G.,
? "Thermophysical properties of refrigerants,"
? Berlin: Springer-Verlag, 1990.\
?\
!end of info section
273.15 !lower temperature limit [K]
507.0 !upper temperature limit [K]
21000.0 !upper pressure limit [kPa]
8.9419 !maximum density [mol/L]
CPP !pointer to Cp0 model
170.93 !molecular weight [g/mol]
230.0 !triple point temperature [K]
10.950 !pressure at triple point [kPa]
9.63 !density at triple point [mol/L]
276.741 !normal boiling point temperature [K]
0.2523 !acentric factor
418.83 3257.0 3.3932 !Tc [K], pc [kPa], rhoc [mol/L]
418.83 3.3932 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
22 5 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
-0.340776521414d+0 3.000 0.00 0 0.0 !a(i),t(i),d(i),l(i),g(i)
0.323001398420d+0 4.000 0.00 0 0.0
-0.424950537596d-1 5.000 0.00 0 0.0
0.107938879710d+1 0.000 1.00 0 0.0
-0.199243619673d+1 1.000 1.00 0 0.0
-0.155135133506d+0 2.000 1.00 0 0.0
-0.121465790553d+0 3.000 1.00 0 0.0
-0.165038582393d-1 4.000 1.00 0 0.0
-0.186915808643d+0 0.000 2.00 0 0.0
0.308074612567d+0 1.000 2.00 0 0.0
0.115861416115d+0 2.000 2.00 0 0.0
0.276358316589d-1 0.000 3.00 0 0.0
0.108043243088d+0 1.000 3.00 0 0.0
0.460683793064d-1 0.000 4.00 0 0.0
-0.174821616881d+0 1.000 4.00 0 0.0
0.317530854287d-1 1.000 5.00 0 0.0
0.340776521414d+0 3.000 0.00 2 1.21103865d0
-0.323001398420d+0 4.000 0.00 2 1.21103865d0
0.424950537596d-1 5.000 0.00 2 1.21103865d0
-0.166940100976d+1 3.000 2.00 2 1.21103865d0
0.408693082002d+1 4.000 2.00 2 1.21103865d0
-0.241738963889d+1 5.000 2.00 2 1.21103865d0
#AUX !auxiliary model specification
CPP ideal gas heat capacity function
?LITERATURE REFERENCE \
?Platzer, B., Polt, A., and Maurer, G.,
? "Thermophysical properties of refrigerants,"
? Berlin: Springer-Verlag, 1990.\
?\
!end of info section
273.15 !lower temperature limit [K]
507.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 170.93 !reducing parameters for T, Cp0
5 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
0.97651380d-01 0.0
0.32408610d-02 1.0
-0.58953640d-05 2.0
0.67379290d-08 3.0
-0.35463640d-11 4.0
#TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Donaldson, A.B. (1975). On the estimation of thermal conductivity of organic vapors.
? Ind. Eng. Chem., 14:325-328.\
?\
?Keyes, F.G. (1954). Thermal conductivity of gases. Trans. ASME, 76:809-816.\
?\
?Shankland, I.R. (1990). Transport properties of CFC alternatives.
? paper presented at AIChE Spring National Meeting, Orlando, Florida.\
?\
?Yata, J., Minamiyama, T., and Tanaka, S. (1984).
? Measurement of thermal conductivity of liquid fluorocarbons.
? Int. J. Thermophysics, 5:209-218.\
?\
?Average absolute deviations of the fit from the experimental data were:\
? Donaldson: 9.27%; Keyes: 1.89%; Shankland: 1.29%; Yata: 1.19%; Overall: 2.95%\
?\
?Lennard-Jones parameters are estimated.\
?\
!end of info section
273.15 !lower temperature limit [K]
507.0 !upper temperature limit [K]
21000.0 !upper pressure limit [kPa]
8.9419 !maximum density [mol/L]
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
0 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.0 !Lennard-Jones coefficient sigma [nm] for ECS method
0.0 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
2 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0961d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-3.4899d-2 0.0 1.0 0.0
#STN !surface tension specification
ST1 surface tension model of Okada and Watanabe (1988).
?LITERATURE REFERENCE \
?Okada, M. and Watanabe, K.,
? "Surface tension correlations for several fluorocarbon refrigerants,"
? Heat Transfer-Japanese Research, 17:35-52, 1988.\
?
!end of info section
180.0 !lower temperature limit [K]
418.83 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
418.78 !critical temperature used by Okada & Watanabe (dummy)
0.05084 1.24 !sigma0 and n
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -