📄 oxygen.fld
字号:
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
5 !number of terms
0.5136E+00 0 !coeff, power of Tstar
-0.5218E+00 1
0.8852E-01 2
0.3445E-02 3
-0.2289E-02 4
@TCX !thermal conductivity model specification
TC3 pure fluid thermal conductivity model of Younglove (1982).
?LITERATURE REFERENCE \
?Younglove, B.A.,
? "Thermophysical Properties of Fluids. I. Argon, Ethylene,
? Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,"
? J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 1, pp. 1-11, 1982.
?\
!end of info section
54.361 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
0.3437 !Lennard-Jones coefficient sigma [nm]
113 !Lennard-Jones coefficient epsilon/kappa [K]
0.15099557923496 !const in Eq 20 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0 !exponent in Eq 20 for T
-1.41202117453516 !eta0 (eq 20): coeffs of {(e/kT)**((4-n)/3)}
8.06267523869911
-19.44147946395
25.78193316324
-20.5167203343277
10.0087040966906
-2.90450673487991
0.459605807669332
-3.01906029521D-02
0.00097916328 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
0.00089116658 !Fv(2)
1.12 !Fv(3)
100 !Fv(4)
-21.520741137 !coefficients for residual viscosity, eqs (22 - 25)
473.50508788 !Ev(2)
11.9072051301147 !Ev(3)
-2122.44247203833 !Ev(4)
0 !Ev(5)
0 !Ev(6)
0 !Ev(7)
31.251171918947 !Ev(8)
2.21064 !F
0.000000038896 !rm
NUL !pointer to critical enhancement auxiliary function (none used)
@ETA !viscosity model specification
VS2 pure fluid viscosity model of Younglove (1982).
?LITERATURE REFERENCE \
?Younglove, B.A.,
? "Thermophysical Properties of Fluids. I. Argon, Ethylene,
? Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,"
? J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 1, pp. 1-11, 1982.
?\
!end of info section
54.361 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
CI2 !pointer to collision integral model
0.3437 !Lennard-Jones coefficient sigma [nm]
113 !Lennard-Jones coefficient epsilon/kappa [K]
0.15099557923496 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0 !exponent in Eq 20 for T
1.39279625307D-02 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
-6.51536010579D-03 !Fv(2)
1.4 !Fv(3)
100 !Fv(4)
-14.45497211 !coefficients for residual viscosity, eqs (22 - 25)
243.40689667 !Ev(2)
12.9006761056004 !Ev(3)
-1949.07966423848 !Ev(4)
-5.62078436742D-02 !Ev(5)
21.3075467849104 !Ev(6)
48.9965711691056 !Ev(7)
13.5942597847419 !Ev(8)
NUL !pointer to critical enhancement auxiliary function (none used)
@AUX !collision integral specification
CI2 collision integral model of Younglove (1982).
?LITERATURE REFERENCE \
?Younglove, B.A.,
? "Thermophysical Properties of Fluids. I. Argon, Ethylene,
? Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,"
? J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 1, pp. 1-11, 1982.
?\
!end of info section
54.361 !lower temperature limit [K]
625.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
9 !number of terms
-67.2093902106092 !eta0 (eq 20): coeffs of {(e/kT)**((4-n)/3)}
277.148660965491
-399.192753863192
166.828729537446
143.163477478684
-191.767060368781
98.4332230147836
-22.9410694301649
2.12402264924749
@TRN !transport model specification
ECS Extended Corresponding States model (Nitrogen reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?the Lennard-Jones parameters are taken from:
?\
?Reid, R.C., Prausnitz, J.M., and Poling, B.E.,
? "The Properties of Gases and Liquids,"
? 4th edition, New York, McGraw-Hill Book Company, 1987.
?\
!end of info section
54.361 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
82000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
FEQ Nitrogen.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.3467 !Lennard-Jones coefficient sigma [nm] for ECS method
106.7 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
#STN !surface tension specification
ST1 surface tension model of Lemmon and Penoncello (1994).
?LITERATURE REFERENCE \
?Lemmon, E.W. and Penoncello, S.G.,
? "The Surface Tension of Air and Air Component Mixtures,"
? Adv. Cryo. Eng., 39:1927-1934, 1994.
?\
!end of info section
54.361 !lower temperature limit [K]
154.581 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
154.581 !critical temperature used in fit (dummy)
0.038612652 1.228 !sigma0 and n
#DE !dielectric constant specification
DE1 dielectric constant model of Younglove (1982).
?LITERATURE REFERENCE \
?Younglove, B.A.,
? "Thermophysical Properties of Fluids. I. Argon, Ethylene,
? Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,"
? J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 1, pp. 1-11, 1982.
?\
!end of info section
54.361 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1.0 1.0 1.0 !reducing parameters for t, d, and p
4 0 0 0 0 0 !number of terms in dielectric constant model
0.396081d-2 0. 1. 0. !coef, t exp, d exp, p exp
0.297000d-6 0. 2. 0.
-0.413000d-7 0. 3. 0.
-0.214000d-7 1. 1. 0.
#MLT !melting line specification
ML2 melting line model of Schmidt and Wagner (1985).
?LITERATURE REFERENCE \
?Schmidt, R. and Wagner, W.,
? "A New Form of the Equation of State for Pure Substances and its
? Application to Oxygen,"
? Fluid Phase Equilibria, 19:175-200, 1985.
?\
!end of info section
54.361 !lower temperature limit [K]
300.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
54.361 0.14633 !reducing temperature and pressure
0 4 0 0 0 0 !number of terms in melting line equation
-0.32463539d+2 0.0625 !coefficients and exponents
0.14278011d+3 0.1250
-0.14702341d+3 0.1875
0.52001200d+2 0.2500
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
#TCX !thermal conductivity model specification
TC1 pure fluid thermal conductivity model of Laesecke (1990).
?LITERATURE REFERENCE \
?Laesecke, A., Krauss, R., Stephan, K., and Wagner, W.,
? "Transport Properties of Fluid Oxygen,"
? J. Phys. Chem. Ref. Data, 19(5):1089-1122, 1990.
?\
?The uncertainties in thermal conductivity are 3% in the dilute gas,
?4% in the liquid, 5% in the vapor and about 6% elsewhere. In the critical
?region, the uncertainty is about 18%.
?\
!end of info section
54.361 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
82000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
2 0 !# terms for dilute gas function: numerator, denominator
1.0 1.0d-3 !reducing parameters for T, tcx
0.5825413d0 -97.00d0 !coeff, power in T
0.0321266d0 -98.00d0
5 0 !# terms for background gas function: numerator, denominator
1.0 13.63 4.909d-3 !reducing par for T, rho (rho_c), tcx
2.32825085 0. 1. 0. !coeff, powers of t, rho, spare for future use
4.23024231 0. 2. 0.
-3.60798307 0. 3. 0.
2.01675631 0. 4. 0.
-0.289731736 0. 5. 0.
TK3 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK3 thermal conductivity critical enhancement of Laesecke et al. (1990)
?LITERATURE REFERENCE \
?Laesecke, A., Krauss, R., Stephan, K., and Wagner, W.,
? "Transport Properties of Fluid Oxygen,"
? J. Phys. Chem. Ref. Data, 19(5):1089-1122, 1990.
?\
!end of info section
54.361 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
82000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
9 0 0 0 !# terms: terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d0 !gnu (universal exponent)
1.2415d0 !gamma (universal exponent)
1.01d0 !R0 (universal amplitude)
0.065d0 !z (universal exponent--not used for t.c., only viscosity)
1.00d0 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
1.6d-10 !xi0 (amplitude) [m]
0.08391d0 !gam0 (amplitude) [-]
0.4167d-9 !qd_inverse (modified effective cutoff parameter) [m]
309.162d0 !tref (reference temperature) [K]
#ETA !viscosity model specification
VS1 pure fluid viscosity model of Laesecke et al. (1990).
?LITERATURE REFERENCE \
?Laesecke, A., Krauss, R., Stephan, K., and Wagner, W.,
? "Transport Properties of Fluid Oxygen,"
? J. Phys. Chem. Ref. Data, 19(5):1089-1122, 1990.
?\
?The uncertainties in viscosity are 1.5% in the dilute gas, 4% in the liquid,
?5% in the vapor and about 6% elsewhere. In the critical region, the
?uncertainty is about 12%.
?\
!end of info section
54.361 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
82000.0 !upper pressure limit [kPa]
43.348 !maximum density [mol/L]
1 !number of terms associated with dilute-gas function
CI1 !pointer to reduced effective collision cross-section model
0.34318867 !Lennard-Jones coefficient sigma [nm]
116.2 !Lennard-Jones coefficient epsilon/kappa [K]
1.0 1.0 !reducing parameters for T, eta
0.151006 0.50d0 !Chapman-Enskog term
0 !number of terms for initial density dependence
0 4 1 2 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
1. 13.63 18.8928 !reducing parameters for T, rho, eta
-1.7993647 0.00 0.00 0.00 0 !simply polynomial terms
-0.397230772 0.00 1.00 0.00 0
0.312536267 0.00 2.00 0.00 0
-0.0615559341 0.00 3.00 0.00 0
-5.60288207 0.00 0.00 0.00 0 !numerator
1.000000 0.00 1.00 0.00 0 !denominator
-3.1138112 0.00 0.00 0.00 0 !denominator
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !collision integral specification
CI1 collision integral model of Stephan (1987).
?LITERATURE REFERENCE \
?Laesecke, A., Krauss, R., Stephan, K., and Wagner, W.,
? "Transport Properties of Fluid Oxygen,"
? J. Phys. Chem. Ref. Data, 19(5):1089-1122, 1990.
?\
!end of info section
54.361 !lower temperature limit [K]
3000.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
5 !number of terms
0.46649 0 !coeff, power of Tstar
-0.57015 1
0.19164 2
-0.03708 3
0.00241 4
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -