⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r152a.fld

📁 一个关于物性计算的软件
💻 FLD
📖 第 1 页 / 共 2 页
字号:
? Property Data," Springer, Berlin, Heidelberg, New York, 2000.
?\
?The uncertainties of the equation of state are approximately 0.2% (to
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
154.56             !lower temperature limit [K]
600.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
18.1               !maximum density [mol/L]
CP1                                    !pointer to Cp0 model
66.051                                 !molecular weight [g/mol]
154.56                                 !triple point temperature [K]
0.064093                               !pressure at triple point [kPa]
18.031                                 !density at triple point [mol/L]
249.11                                 !normal boiling point temperature [K]
0.275                                  !acentric factor
386.41       4519.8       5.5714524    !Tc [K], pc [kPa], rhoc [mol/L]
386.41                    5.5714524    !reducing parameters [K, mol/L]
8.31451                                !gas constant [J/mol-K]
      12  4      0  0       0  0       !# terms, # coeff/term for:  "normal" terms, critical, spare
 0.957023260000E+00  0.25    1.0     0 !a(i),t(i),d(i),l(i)
-0.237071960000E+01  1.25    1.0     0
 0.187484630000E+00  1.5     1.0     0
 0.638008430000E-01  0.25    3.0     0
 0.166259770000E-03  0.875   7.0     0
 0.822081650000E-01  2.375   1.0     1
 0.572435180000E+00  2.0     2.0     1
 0.394767010000E-02  2.125   5.0     1
-0.238486540000E+00  3.5     1.0     2
-0.807116180000E-01  6.5     1.0     2
-0.731035580000E-01  4.75    4.0     2
-0.155387240000E-01 12.5     2.0     3


#AUX               !auxiliary model specification
CP1  ideal gas heat capacity function
?LITERATURE REFERENCE \
?Tillner-Roth, R.,
? "A Fundamental Equation of State for 1,1-Difluoroethane (HFC-152a),"
? Int. J. Thermophys., 16(1):91-100, 1995.
?\
!end of info section
154.56             !lower temperature limit [K]
435.0              !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          8.3144710                 !reducing parameters for T, Cp0
  3  0    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
 0.14652739E+01    0.25
 0.26276770E-04    2.00
-0.29988241E-10    4.00


#TCX               !thermal conductivity model specification
TC1  pure fluid thermal conductivity model of Krauss et al. (1996).
?LITERATURE REFERENCE \
?Krauss, R., Weiss, V.C., Edison, T.A., Sengers, J.V., and Stephan, K.,
? "Transport properties of 1,1-Difluoroethane (R152a),"
? Int. J. Thermophysics 17:731-757, 1996.\
?\
?The uncertainty in thermal conductivity is 3% in the dilute gas and 5%
?elsewhere (10% in the critical region).
?\
!end of info section
154.56             !lower temperature limit [K]  !Krauss claims only 240 K, but seems to extrapolate fine
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
18.07              !maximum density [mol/L]
2   0              !# terms for dilute gas function:  numerator, denominator
1.0     1.0d-3     !reducing parameters for T, tcx [Krauss corr in mW/m.K]
-1.49420d+01    0.00d0   !coeff, power in T
 9.73283d-02    1.00d0
4   0              !# terms for background gas function:  numerator, denominator
1.0    5.571450     1.115d-03             !reducing par for T, rho (rho_c), tcx
 9.18090d+00   0.00d0   1.00d0   0.00d0   !coeff, powers of t, rho, spare for future use
 1.18577d+01   0.00d0   2.00d0   0.00d0
-5.44730d+00   0.00d0   3.00d0   0.00d0
 1.71379d+00   0.00d0   4.00d0   0.00d0
TK6                !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK6  simplified thermal conductivity critical enhancement of Olchowy & Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.\
?\
?as applied to R134a by:\
?Krauss, R., Weiss, V.C., Edison, T.A., Sengers, J.V., and Stephan, K.,
? "Transport properties of 1,1-Difluoroethane (R152a),"
? Int. J. Thermophysics 17:731-757, 1996.\
?\
!end of info section
154.56             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
18.07              !maximum density [mol/L]
9  0  0  0         !# terms:  critical-terms, spare, spare, spare
1.0     1.0     1.0     !reducing parameters for T, rho, tcx
 0.630d+00         !gnu (universal exponent)
 1.239d+00         !gamma (universal exponent)
 1.03d+00          !R0 (universal amplitude)
 0.063d+00         !z (universal exponent--not used for t.c., only viscosity)
 1.075d+00         !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
 1.894d-10         !xi0 (amplitude) [m]
 0.0487d+00        !gam0 (amplitude) [-]
 4.37d-10          !qd_inverse (modified effective cutoff parameter) [m]
 579.617d+00       !tref (reference temperature) [= 1.5 * 386.411 K]


#AUX               !collision integral model specification
CI1  collision integral model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?Krauss, R., Weiss, V.C., Edison, T.A., Sengers, J.V., and Stephan, K.,
? "Transport properties of 1,1-Difluoroethane (R152a),"
? Int. J. Thermophysics 17:731-757, 1996.\
?\
!end of info section
240.0              !lower temperature limit [K]
500.0              !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
5                  !number of terms
 0.4425728d+0  0   !coeff, power of Tstar
-0.5138403d+0  1
 0.1547566d+0  2
-0.2821844d-1  3
 0.1578286d-2  4


@TRN               !transport model specification
ECS  Extended Corresponding States model (propane reference); fit to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?vanderGulik, P. S.(1995)"Viscosity of saturated R152a measured
? with a vibrating wire viscometer" Int. J. Thermophys.,16, 867-76
?
?Takahashi, M.; Yokoyama, C.; and Takahashi, S.(1987)"Viscosities
? of Gaseous R13B1, R142b, and R152a" J. Chem. Eng. Data,32,98-103.
?
?Assael, M. J.; Polimatidou, S. K.; Vogel, E.; and Wakeham, W. A.(1994).
? "Measurements of the viscosity of R11, R12, R141b, and R152a
? in the temperature range 270-340 K at pressures up to 20 MPa"
? Int. J. Thermophys.,15,575-89.
?
?Karbanov, E.M. (1978). "Investigation of the Dynamic Viscosity of
? Some Freons of Ethane Type and of the Bromide Freons"
? Ph.D. Thesis, Groz. Neft. Inst., Grozny, USSR
?
?Average absolute deviations of the fit from the experimental data were:\
?  vanderGulik:  4.77%; Takahashi:  1.73%; Assael: 1.62%; Karbanov:5.64%
?  Overall:  2.78%\
?\
? Lennard Jones parameters are from Krauss, R., Weiss, V.C., Edison, T.A.,
?  Sengers, J.V., and Stephan, K.,"Transport properties of
?  1,1-Difluoroethane (R152a),"Int. J. Thermophysics 17:731-757, 1996.\
?
?
!end of info section
154.56             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
18.07              !maximum density [mol/L]
FEQ propane.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.46115            !Lennard-Jones coefficient sigma [nm] for ECS method
354.84             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1  0  0                       !number of terms in f_int term in Eucken correlation, spare1, spare2
 1.3200d-3   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
2  0  0                         !number of terms in psi (visc shape factor): poly,spare1,spare2
 0.824547d+0   0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
 6.40641d-02   0.0   1.0   0.0  !coeff, power of Tr, power of Dr, spare
1  0  0                         !number of terms in chi (t.c. shape factor): poly,spare1,spare2
 1.0000d+0   0.0   0.0   0.0    !coeff, power of Tr, power of Dr, spare


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.
? "Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b,
? HCFC-142b, and HFC-152a,"
? Int. J. Thermophysics, 16(3):791-800, 1995.
?\
!end of info section
154.56             !lower temperature limit [K] (Okada lists 273 K, should extrapolate)
386.411            !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
386.41                      !critical temperature used by Okada & Higashi (dummy)
 0.05906     1.221          !sigma0 and n


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890


@ETA               !viscosity model specification
VS1  pure fluid viscosity model of Krauss et al. (1996).
?LITERATURE REFERENCE \
?Krauss, R., Weiss, V.C., Edison, T.A., Sengers, J.V., and Stephan, K.,
? "Transport properties of 1,1-Difluoroethane (R152a),"
? Int. J. Thermophysics 17:731-757, 1996.\
?\
?The uncertainty in viscosity is 1% in the dilute gas, and 3% elsewhere above
?300 K.
?\
!end of info section
240.0              !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
15.90              !maximum density [mol/L]
1                  !number of terms associated with dilute-gas function
CI1                !pointer to reduced effective collision cross-section model
0.46115            !Lennard-Jones coefficient sigma [nm]
354.84             !Lennard-Jones coefficient epsilon/kappa [K]
1.0    1.0         !reducing parameters for T, eta
0.2169614d0  0.5d0 !Chapman-Enskog term
0                  !number of terms for initial density dependence
0 5 1 2 0 0        !# resid terms:  close-packed density;  simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
1.0     5.571537     51.12         !reducing parameters for T, rho (= 368 kg/m^3, note:  Krauss uses MW = 66.05), eta (= the pseudo-critical viscosity)
-0.139987d+0  0.00  0.00  0.00  0  !E5*E6; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
-0.737927d-1  0.00  1.00  0.00  0  !E1
 0.517924d+0  0.00  2.00  0.00  0  !E2
-0.308875d+0  0.00  3.00  0.00  0  !E3
 0.108049d+0  0.00  4.00  0.00  0  !E4
-0.408387d+0  0.00  0.00  0.00  0  !E5
-2.917330d+0  0.00  0.00  0.00  0  !-E6 term in denominator
 1.000000d+0  0.00  1.00  0.00  0  !rho/rhoc term in denominator
NUL                !pointer to critical enhancement auxiliary function (none used)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -