📄 isobutan.fld
字号:
1. 0.0 0.00 1.00 0
-1. 0.0 1.00 0.00 0
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !collision integral specification
CI1 collision integral model of Vogel et al. (2000).
?LITERATURE REFERENCE \
?Vogel, E., Kuechenmeister, C., and Bich, E.,
? "Viscosity Correlation for Isobutane over Wide Ranges of the Fluid Region,"
? Int. J. Thermophys, 21(2):343-356, 2000.
?\
!end of info section
113.55 !lower temperature limit [K]
600.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
3 !number of terms
0.53583008 0 !coeff, power of Tstar
-0.45629630 1
0.049911282 2
@ETA !viscosity model specification
VS2 pure fluid viscosity model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?The uncertainty in viscosity is 2%, except in the critical region which is 10%.
?\
?N.B. all temperatures on IPTS-68
?\
!end of info section
113.55 !lower temperature limit [K]
600.0 !upper temperature limit [K]
35000. !upper pressure limit [kPa]
12.90 !maximum density [mol/L]
CI2 !pointer to collision integral model
0.509217 !Lennard-Jones coefficient sigma [nm]
418.0 !Lennard-Jones coefficient epsilon/kappa [K]
2.0352526600d-1 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0.5 !exponent in Eq 19 for T
1.6878386520d+0 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
0.0 !Fv(2)
1.40 !Fv(3)
407.85 !Fv(4)
-0.2055498053d+2 !coefficients for residual viscosity, eqs (22 - 25)
0.1357076181d+4 !Ev(2)
0.1893774336d+2 !Ev(3)
-0.1822277344d+5 !Ev(4)
-0.4599387773d-2 !Ev(5)
0.6305247065d+2 !Ev(6)
0.1282253921d+5 !Ev(7)
3.86 !Ev(8)
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !auxiliary model specification
CI2 collision integral model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?N.B. all temperatures on IPTS-68
?\
!end of info section
134.86 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
9 !number of terms
-3.0328138281 !Omega (eq 20): coeffs of {(e/kT)**((4-n)/3)}
16.918880086 !N.B. there is misprint in Younglove and Ely, the exponent
-37.189364917 ! is ((4-n)/3) not ((n+2)/3)
41.288861858
-24.61592114
8.948843096
-1.8739245042
0.209661014 !N.B. wrong sign in Younglove and Ely, Table 2
-0.009657044
@TRN !transport model specification
ECS Extended Corresponding States model (Nitrogen reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?Thermal conductivity and viscosity data used in the development of the
? extended corresponding states correlations were taken from:
?\
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?the Lennard-Jones parameters are taken from:
?\
?Reid, R.C., Prausnitz, J.M., and Poling, B.E.,
? "The Properties of Gases and Liquids,"
? 4th edition, New York, McGraw-Hill Book Company, 1987.
?\
!end of info section
113.55 !lower temperature limit [K]
600.0 !upper temperature limit [K]
35000.0 !upper pressure limit [kPa]
12.90 !maximum density [mol/L]
FEQ Nitrogen.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5278 !Lennard-Jones coefficient sigma [nm] for ECS method
330.1 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
#STN !surface tension specification
ST1 surface tension model of Baidakov and Sulla (1985).
?LITERATURE REFERENCE \
?Baidakov, V.G. and Sulla, I.I.
? "Surface tension of propane and isobutane at near-critical temperatures,"
? Russian Journal of Physical Chemistry, 59:551-554, 1985.
?\
!end of info section
113.55 !lower temperature limit [K]
407.85 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
2 !number of terms in surface tension model
407.8 !critical temperature used by Baidakov and Sulla (dummy)
0.05756 1.290 !sigma0 and n
-0.009554 2.290
#DE !dielectric constant specification
DE1 dielectric constant model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?The uncertainty in dielectric constant is 0.05%.
?\
!end of info section
83.80 !lower temperature limit [K]
150.6633 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
407.85 1.0 1.0 !reducing parameters for t, d, and p
4 1 0 0 0 0 !number of terms in dielectric constant model
0.19867026d-1 0. 1. 0. !coef, t exp, d exp, p exp
0.17600053d-3 0. 2. 0.
-0.15267372d-4 0. 3. 0.
-0.56375024d-6 0. 1. 1.
0.99472904d-3 0. 1. 0.
#MLT !melting line specification
ML1 melting line model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
!end of info section
113.55 !lower temperature limit [K]
600.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1. 1000. !reducing temperature and pressure
2 0 0 0 0 0 !number of terms in melting line equation
-42.9999189263 0. !coefficients and exponents
0.137382d-10 6.08
#PS !vapor pressure equation
PS6 vapor pressure equation of Miyamoto and Watanabe (2001).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
113.56 !lower temperature limit [K]
407.817 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
407.817 3640.0 !reducing parameters
4 0 0 0 0 0 !number of terms in equation
-6.995565 2. !coefficients and exponents
1.754758 3.
-1.833831 5.
-2.19197 9.
#DL !saturated liquid density equation
DL3 saturated liquid density equation of Miyamoto and Watanabe (2001).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
113.56 !lower temperature limit [K]
407.817 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
407.817 3.8601429 !reducing parameters
3 0 0 0 0 0 !number of terms in equation
1.60562 0.33 !coefficients and exponents
-2.374095 1.0
2.098763 1.1
#DV !saturated vapor density equation
DV3 saturated vapor density equation of Miyamoto and Watanabe (2001).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
113.56 !lower temperature limit [K]
407.817 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
407.817 3.8601429 !reducing parameters
5 0 0 0 0 0 !number of terms in equation
-1.523942 0.33 !coefficients and exponents
-4.792479 0.8
-9.282003 2.3
-26.37251 4.4
-85.56735 10.0
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -