⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r141b.fld

📁 一个关于物性计算的软件
💻 FLD
字号:
R141b                                 !short name
1717-00-6                             !CAS number
1,1-dichloro-1-fluoroethane           !full name
CCl2FCH3                              !chemical formula
HCFC-141b                             !synonym
116.95             !molecular weight [g/mol]
169.85             !triple point temperature [K] of Sukornic, B. (1989) Int. J. Thermophysics  10: 553-561.
305.2              !normal boiling point [K]
479.96             !critical temperature [K]
4460.0             !critical pressure [kPa]
3.9333             !critical density [mol/L]
0.2235             !acentric factor
2.014              !dipole moment [Debye]; Meyer & Morrison (1991) J. Chem. Eng. Data 36:409-413.
IIR                !default reference state
6.1                !version number

! compiled by E.W. Lemmon, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 06-12-97 EWL, original version
! 06-16-97  MM, add dipole moment, triple point temperature
! 10-24-97  MM, read in f_int term in Eucken correlation in ECS method for t.c.
!               change reference fluid EOS for ECS-transport from BWR to FEQ
! 04-12-01 EWL, add Lemmon and Span short EOS
! 05-21-02 MLH, added ECS fits for viscosity, thermal conductivity,
!               changed ref fluid to propane for transport to allow low T calculations.


#EOS               !equation of state specification
FEQ  short Helmholtz equation of state for R-141b of Lemmon and Span (2001).
?LITERATURE REFERENCE \
?Lemmon, E.W. and Span, R.,
? preliminary equation, 2001.
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
12.55              !maximum density [mol/L]
CPP                                    !pointer to Cp0 model
116.95                                 !molecular weight [g/mol]
169.85                                 !triple point temperature [K]
0.0066                                 !pressure at triple point [kPa]
12.55                                  !density at triple point [mol/L]
305.2                                  !normal boiling point temperature [K]
0.2235                                 !acentric factor
479.96          4460.0    3.9333       !Tc [K], pc [kPa], rhoc [mol/L]
479.96                    3.9333       !reducing parameters [K, mol/L]
8.314472                               !gas constant [J/mol-K]
  12  4      0  0      0  0            !# terms, # coeff/term for:  "normal" terms, critical, spare
   0.11569E+01        0.25    1.0     0 !a(i),t(i),d(i),l(i)
  -0.37397E+01        1.25    1.0     0
   0.14172E+01        1.5     1.0     0
   0.83484E-01        0.25    3.0     0
   0.25882E-03        0.875   7.0     0
   0.26247E+00        2.375   1.0     1
   0.47211E+00        2.0     2.0     1
  -0.32103E-01        2.125   5.0     1
  -0.30430E+00        3.5     1.0     2
  -0.15149E-01        6.5     1.0     2
  -0.75875E-01        4.75    4.0     2
  -0.14480E-01       12.5     2.0     3


@EOS               !equation of state specification
ECS  Extended Corresponding States model w/ T-dependent shape factors.
?LITERATURE REFERENCE \
?Huber, M.L. and Ely, J.F.,
? "A predictive extended corresponding states model for pure and mixed
? refrigerants including an equation of state for R134a,"
? Int. J. Refrigeration, 17:18-31, 1994.\
?\
?ECS parameters fitted by E.W. Lemmon, NIST, 06-12-97\
?Average absolute deviations of the fit from the experimental data were:\
?   PVT(vapor): 0.04%;  PVT(liq.): 0.02%;  Pv: 0.06%;  Dsat(liq.): 0.02%
?   Snd(vapor): 0.02%;  Snd(liq.): 0.21%
?\
?DATA SOURCES\
?Takagi, T. and Hongo, M.
? Ultrasonic Speeds in Liquid 1,1-Dichloro-1-Fluoroethane at
? Temperatures from 283 to 373 K and Pressures up to 50 MPa.
? J. Chem. Eng. Data, 38:60-62 (1993).\
?\
?Goodwin, A.R.H. and Moldover, M.R.
? Thermophysical Properties of Gaseous Refrigerants from Speed of Sound
? Measurements.  II.  Results for 1,1-dichloro-1-fluoroethane (CCl(2)FCH(3)).
? J. Chem. Phys. (1991).\
?\
?Weber, L.A. PVT and Thermodynamic Properties of R141B in the Gas Phase.
? Paper Number 69, 18th Int. Cong. Ref., Montreal, Quebec, Canada, (1991).\
?\
?Weber, L.A. Ebulliometric Measurement of the Vapor Pressures of R123 and R141b.
? Fluid Phase Equilib., 80:141-148 (1992).\
?\
?Matsuo, S., Yanaka, Y., Kubota, H., and Makita, T.,
? Liquid Densities of HCFC 225ca, HCFC 225cb and HCFC 141b.
? J. Chem. Eng. Data, 39:903-906 (1994).\
?\
!end of info section
233.15             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
11.601             !maximum density [mol/L]
CPP                !pointer to Cp0 model
Propane.fld
BWR                !pointer to reference fluid model
0.15238            !acentric factor for propane used in shape factor correlation
0.27627            !critical compressibility for propane used in correlation
0.22483            !acentric factor for fluid used in shape factor correlation
477.35             !critical temperature [K]
4250.0             !critical pressure [kPa]
3.9333             !critical density [mol/L]
2                         !number of temperature coefficients for 'f' shape factor
  0.558499411d-1  0       !alpha1 of Huber & Ely
 -0.742177639d+0  1       !alpha2 of Huber & Ely (log(Tr) term)
0                         !number of density coefficients for 'f' shape factor
2                         !number of temperature coefficients for 'h' shape factor
 -0.129788293d+0  0       !beta1 of Huber & Ely
  0.284793372d+0  1       !beta2 of Huber & Ely (log(Tr) term)
0                         !number of density coefficients for 'h' shape factor


#AUX               !auxiliary model specification
CPP  ideal gas heat capacity function
?Based on data of:\
?Goodwin, A.R.H. and Moldover, M.R.
? Thermophysical properties of gaseous refrigerants from speed of sound
? measurements.  II.  results for 1,1-dichloro-1-fluoroethane
? (CCl(2)FCH(3)). J. Chem. Phys. (1991).
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          8.31451                   !reducing parameters for T, Cp0
  3  0    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
   2.57223d+0  0.0
   3.30341d-2  1.0
  -2.05025d-5  2.0


#TRN               !transport model specification
ECS  Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Perkins, R., Cusco, L., Howley, J., Laesecke, A., Matthes, S. and Ramires, M.L.V. (2001).
? "Thermal conductivities of alternatives to CFC-11 for foam insulation".
? J. Chem. Eng. Data, 46(2):428-432.
?
?Yamamoto, R., Matsuo, S. and Tanaka, Y. (1993). "Thermal conductivity of
? halogenated ethanes, HFC-134a, HCFC-123, and HCFC-141b", Int. J. Thermophys, 14(1):79-90.
?
?Papadaki, M., Schmitt, M., Seitz, A., Stephan, K., Taxis, B. and Wakeham, W.A. (1993).
? "Thermal conductivity of R134a and R141b within the temperature range 240-307K
? at the saturation vapor pressure", Int. J. Thermophys. 14(2): 173-181.
?
?Yata, J., Hori, M., Kurahashi, T. and Minamiyama, T. (1992). "Thermal
? conducticity of alternative fluorocarbons in liquid phase", Fluid Phase Equ.,80:287-296.
?
?Gao, X., Yamada, T., Nagasaka, Y. and Nagashima, A. (1996). "The thermal
? conductivity of CFC alternatives HFC-125 and HCFC-141b in the liquid phase",
? Int. J. Thermophys. 17(2):279-293.
?
?Dohrn, R., Treckmann, R., and Heinemann, T. (1999). "Vapor-phase thermal
? conductivity of 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-
? pentafluoropropane and carbon dioxide". Fluid Phase Equilibria 158-160:1021-1028\
?
?Richard, R.G. and Shankland, I.R. (1989). "A transient hot-wire method for measuring
? the thermal conductivity of gases and liquids", Int. J. Thermophys.,10(3):673-686.
?
?Tanaka, Y., Nakata, M. and Makita, T. (1991). "Thermal conductivity of gaseous HFC-134a,
? HFC-143a, HCFC-141b, and HCFC-142b", Int. J. Thermophys. 12(6):949-963.
?
?Assael, M.J. amd Karagiannidis, L. (1995). "Measurments of the thermal conductivity of
? liquid R32, R124, R125, and R141b", Int. J.Thermophys. 16(4):851-865.
?
?Gurova, A.N., Nieto de Castro, C. and Mardolcar, U. (1995)."The thermal conductivity of
? liquid halocarbons", paper C1c5, Proc. 4th Asian Thermophysical Properties Conf., Tokyo, Japan.
?\
?Average absolute deviations of the fit from the experimental data were:\
?  Perkins:  4.42%; Yamamoto:  5.61%; Papadaki 3.16%; Yata: 4.26%; Gao: 0.32%;
?  Dohrn: 1.52%; Richard: 1.79%, Tanaka: 16.03%; Assael: 0.28%; Gurova: 3.95%;
?  Overall:  3.22%\
?\
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?Diller, D.E., Aragon, A.S. and Laesecke, A. (1993).
? "Measurements of the Viscosities of saturated and compressed liquid 1,1,1,2-tetrafluoroethane
? (R134a), 2.2-dichloro-1,1,1-trichloroethane (R123) and 1,1-dichloro-1-fluoroethane (R141b)"
? Fluid Phase Equilibrioa, 88:251-162.
?
?Kumagai, A. and Yokoyama, C.,(2001). "Revised viscosities of saturated liquid halocarbon
? refrigerants from 273 to 353 K ", Int. J. Thermophys., 21(4):909-912.
?
?Assael, M.J., Polimatidou, S.K., Vogel, E. and Wakeham, W.A. (1994). "Measurements
? of the viscosity of R11, R12, R141b, and R152a in the temperature range 270 -340 K
? at pressures up to 20 MPa", Int. J. Thermophys. 15(4): 575-589.
?
?Average absolute deviations of the fit from the experimental data were:\
?   Diller:  2.60%; Kumagai: 1.03%; Assael: 1.80%;
?   Overall: 2.12 %\
?\
?Lennard-Jones parameters are estimated.\
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
12.55              !maximum density [mol/L]
FEQ propane.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5493             !Lennard-Jones coefficient sigma [nm] for ECS method !from scaling R134a
370.44             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method !from scaling R134a
2  0  0                       !number of terms in f_int term in Eucken correlation, spare1, spare2
5.21722d-4   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
2.92456d-6   1.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
2  0  0                       !number of terms in psi (visc shape factor): poly,spare1,spare2
0.921345d+0  0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
 0.41091d-1  0.0   1.0   0.0  !coeff, power of Tr, power of Dr, spare
2  0  0                       !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.086710d+0   0.0   0.0   0.0 !coeff, power of Tr, power of Dr, spare
-2.16469d-02  0.0   1.0   0.0 !coeff, power of Tr, power of Dr, spare
TK6                           !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK6  simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
12.55              !maximum density [mol/L]
9  0  0  0         !# terms:  CO2-terms, spare, spare, spare
1.0     1.0     1.0      !reducing par for T, rho, tcx (mW/m-K)
0.630d0            !gnu (universal exponent)
1.239d0            !gamma (universal exponent)
1.03d0             !R0 (universal amplitude)
0.063d0            !z (universal exponent--not used for t.c., only viscosity)
1.00d0             !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
0.194d-9           !xi0 (amplitude) [m]
0.0496             !gam0 (amplitude) [-]
 0.5d-09           !qd_inverse (modified effective cutoff parameter) [m] generic number, not fit to data
 719.94d+00        !tref (reference temperature)=1.5*Tc [K]


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.
? "Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b,
? HCFC-142b, and HFC-152a,"
? Int. J. Thermophysics, 16(3):791-800, 1995.
?\
!end of info section
169.85             !lower temperature limit [K]
479.96             !critical temperature [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
477.31                      !critical temperature used by Okada & Watanabe (dummy)
 0.06087     1.235          !sigma0 and n


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -