📄 r227ea.fld
字号:
R227ea !short name
431-89-0 !CAS number
1,1,1,2,3,3,3-heptafluoropropane !full name
CF3CHFCF3 !chemical formula
HFC-227ea !synonym
170.0289 !molecular weight [g/mol]
146.35 !triple point temperature [K]
256.7 !normal boiling point [K]
374.8 !critical temperature [K]
2926.0 !critical pressure [kPa]
3.37 !critical density [mol/L]
0.357 !acentric factor
1.456 !dipole moment [Debye]; Goodwin & Mehl (1997) IJT 18:795-806
IIR !default reference state
6.1 !version number
! compiled by E.W. Lemmon, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 01-24-97 EWL, original version
! 06-01-97 EWL, add parameters for ECS viscosity correlation
! 06-10-97 EWL, ECS parameters for density modified
! 10-24-97 MM, read in f_int term in Eucken correlation in ECS method for t.c.
! change reference fluid EOS for ECS-transport from BWR to FEQ
! 11-25-97 MM, add dipole moment
! 07-28-98 EWL, update fit using Tuerk saturation data. Change to R12 reference fluid.
! 01-14-02 MLH, update viscosity and thermal conductivity fits. Propane ref. fluid.
! 02-14-02 EWL, added Helmholtz eos
! 05-21-02 MLH, refit transport using new Helmholtz EOS
#EOS !equation of state specification
FES Helmholtz equation of state for R227ea of Lemmon and Span (2002).
?LITERATURE REFERENCE \
?Lemmon, E.W. and Span, R.,
? preliminary equation, 2002.
?\
?The uncertainty in density of the equation of state ranges from 0.2% at
?low temperatures in the liquid and vapor to 0.5% at the highest temperatures.
?The uncertainty in heat capacities is 2% and the uncertainty in vapor
?pressure is 0.4%. In the critical region, the uncertainties are higher for
?all properties except vapor pressure.
?\
!end of info section
146.35 !lower temperature limit [K]
500. !upper temperature limit [K]
60000. !upper pressure limit [kPa]
11.12 !maximum density [mol/L]
CPP !pointer to Cp0 model
170.0289 !molecular weight [g/mol]
146.35 !triple point temperature [K]
0.00734 !pressure at triple point [kPa]
11.12 !density at triple point [mol/L] (unknown)
256.7 !normal boiling point temperature [K]
0.357 !acentric factor
374.8 2926.0 3.37 !Tc [K], pc [kPa], rhoc [mol/L]
374.8 3.37 !reducing parameters [K, mol/L]
8.314472 !gas constant [J/mol-K]
12 4 0 12 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
1.2112 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-3.1207 1.25 1.0 0
0.57291 1.5 1.0 0
0.083616 0.25 3.0 0
0.00021588 0.875 7.0 0
0.58346 2.375 1.0 1
0.81903 2.0 2.0 1
-0.014624 2.125 5.0 1
-0.43751 3.5 1.0 2
-0.032821 6.5 1.0 2
-0.13442 4.75 4.0 2
-0.024174 12.5 2.0 3
#AUX !auxiliary model specification
CPP ideal gas heat capacity function
?LITERATURE REFERENCE \
?Lemmon, E.W. and Span, R.,
? preliminary equation, 2002.
?\
!end of info section
100.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 8.314472 !reducing parameters for T, Cp0
3 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
0.52685E+01 0.
0.41496E-01 1.
-0.15910E-04 2.
@EOS !equation of state specification
ECS Extended Corresponding States model w/ T-dependent shape factors.
?LITERATURE REFERENCE \
?Huber, M.L. and Ely, J.F.,
? "A predictive extended corresponding states model for pure and mixed
? refrigerants including an equation of state for R134a,"
? Int. J. Refrigeration, 17:18-31, 1994.\
?\
?ECS parameters fitted by Eric W. Lemmon, NIST, 07-28-98\
?Average absolute deviations of the fit from the experimental data were:\
? PVT: 0.04%; Psat: 0.10%; \
?\
?DATA SOURCES\
?Defibaugh, D.R. and Moldover, M.R. Compressed and saturated liquid densities
? for 18 halogenated organic compounds. J. Chem. Eng. Data, 42(1):160-168
? (1997).\
?\
?Tuerk, M., Zhai, J., Nagel, M., Bier, K. Measurement of the vapor pressure
? and the critical properties of new refrigerants. VDI Fortschritt-Bericht,
? Series 19, Number 79, 1995.\
?\
!end of info section
200.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
10.1448 !maximum density [mol/L]
CP1 !pointer to Cp0 model
R12.fld
FEQ !pointer to reference fluid model
0.17948 !acentric factor for R12 used in shape factor correlation
0.27643 !critical compressibility for R12 used in correlation
0.3632 !acentric factor for fluid used in shape factor correlation
374.885 !critical temperature [K]
2929.0 !critical pressure [kPa]
3.4347 !critical density [mol/L]
3 !number of temperature coefficients for 'f' shape factor
0.505817895E+00 0 !alpha1 of Huber & Ely
-0.338008276E+00 1 !alpha2 of Huber & Ely (log(Tr) term)
-0.885283625E-01 1
0 !number of density coefficients for 'f' shape factor
2 !number of temperature coefficients for 'h' shape factor
-0.133630301E+00 0 !beta1 of Huber & Ely
0.348415870E-01 1 !beta2 of Huber & Ely (log(Tr) term)
0 !number of density coefficients for 'h' shape factor
#AUX !auxiliary model specification
CP1 ideal gas heat capacity function; coefficients from Refprop v5.10
?LITERATURE REFERENCES \
?coefficients from Refprop v5.10
!end of info section
200.0 !lower temperature limit [K]
400.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 1.0 !reducing parameters for T, Cp0
3 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
2.1655310d+1 0.00 !c(i), power of T
4.7686291d-1 1.00
-3.1536180d-4 2.00
#TRN !transport model specification
ECS Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Perkins, R., Cusco, L., Howley, J., Laesecke, A., Matthes, S. and Ramires, M.L.V. (2001).
? "Thermal conductivities of alternatives to CFC-11 for foam insulation".
? J. Chem. Eng. Data, 46(2):428-432.
?
? Liu, X.J., Shi, L., Duan, Y.Y., Han, L. Z. and Zhu, M.S.(1999). "Thermal
? conductivity of gaseous 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea)",
? J. Chem. Eng. Data 44,882-886.
?
?Perkins, R.(2002). liquid phase data for R227ea, personal communication, NIST, 325 Broadway, Boulder CO 80305,
? perkins@boulder.nist.gov
?
?\
?Average absolute deviations of the fit from the experimental data were:\
? Perkins(2001): 1.69%; Liu: 5.90%; Perkins(2002): 1.27%
? Overall: 2.20%\
?
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?Laesecke, A. and R. F. Hafer
? "Viscosity of Fluorinated Propane Isomers. 2. Measurements of Three
? Compounds and Model Comparisons,"
? J. Chem. Eng. Data, 43(1):84-92, 1998.
?
?Liu, X.J., Shi, L., Han, L.Z. and Zhu, M.S. (1999). "Liquid viscosity of
? 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) along the saturation line",
? J. Chem. Eng. Data 44:688-692.
?
?Average absolute deviations of the fit from the experimental data were:\
? Laesecke: 0.68%; Liu: 3.77
? Overall: 1.15%
?
?The Lennard-Jones parameters are estimated.\
?\
!end of info section
146.35 !lower temperature limit [K]
500. !upper temperature limit [K]
60000. !upper pressure limit [kPa]
11.12 !maximum density [mol/L]
FEQ propane.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates) !from scaling R134a
0.5746 !Lennard-Jones coefficient sigma [nm] for ECS method
289.34 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.42313d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
8.31496000d-09 1.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
3 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
0.767583 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
0.25448209 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
-5.33748d-02 0.0 2.0 0.0 !coeff, power of Tr, power of Dr, spare
2 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.31223d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-8.74448d-02 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
TK6 !pointer to critical enhancement auxiliary function
@AUX !thermal conductivity critical enhancement model
TK6 simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
146.35 !lower temperature limit [K]
500. !upper temperature limit [K]
60000. !upper pressure limit [kPa]
11.12 !maximum density [mol/L]
9 0 0 0 !# terms: CO2-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d0 !gnu (universal exponent)
1.239d0 !gamma (universal exponent)
1.03d0 !R0 (universal amplitude)
0.063d0 !z (universal exponent--not used for t.c., only viscosity)
1.00d0 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
0.194d-9 !xi0 (amplitude) [m]
0.0496 !gam0 (amplitude) [-]
0.5d-09 !qd_inverse (modified effective cutoff parameter) [m] generic number, not fit to data
562.3275d+00 !tref (reference temperature)=1.5*Tc [K]
#STN !surface tension specification
ST1 surface tension model of Schmidt et al. (1996).
?LITERATURE REFERENCE \
?Surface tension is based on the estimation method of: \
?Schmidt, J.W., Carrillo-Nava, E., and Moldover, M.R.,
? "Partially halogenated hydrocarbons CHFCl-CF3, CF3-CH3, CF3-CHF-CHF2,
? CF3-CH2-CF3, CHF2-CF2-CH2F, CF3-CH2-CHF2, CF3-O-CHF2: Critical temperature,
? refractive indices, surface tension and estimates of liquid, vapor and
? critical densities,"
? Fluid Phase Equilibria, 122:187-206, 1996.
?
!end of info section
200.0 !lower temperature limit [K]
374.885 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
3 !number of terms in surface tension model
374.885 !critical temperature used in fit (dummy)
0.048731 1.26 !sigma0 and n
0.016959 1.76 != sigma0 * sigma1
-0.023732 2.26 != sigma0 * sigma2
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -