⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r142b.fld

📁 一个关于物性计算的软件
💻 FLD
字号:
R142b                                 !short name
75-68-3                               !CAS number
1-chloro-1,1-difluoroethane           !full name
CClF2CH3                              !chemical formula
HCFC-142b                             !synonym
100.495            !molecular weight [g/mol]
142.72             !triple point temperature [K]
264.0              !normal boiling point [K]
410.26             !critical temperature [K]
4070.0             !critical pressure [kPa]
4.438              !critical density [mol/L]
0.2337             !acentric factor
2.14               !dipole moment [Debye]; value from REFPROP v5.0
IIR                !default reference state
6.1                !version number

! compiled by M. McLinden, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 05-23-96  MM, original version
! 06-17-96  MM, add ECS-transport coefficients fitted by S.A. Klein
! 09-23-96 EWL, replace T-only ECS model with one having both T- and rho-dependence
! 09-30-96  MM, change order of f,h coefficients
! 10-03-96  MM, add surface tension model
! 01-31-97  MM, change pointer for ECS reference viscosity from VS3 to VS1
! 02-20-97  MM, add default reference state
! 02-26-97  MM, add version number (future use)
! 03-11-97  MM, modify ECS-transport to new format
! 03-25-97  MM, set Psi,Chi coeff in ECS-transport to 1,0 pending refit of data
! 10-24-97  MM, read in f_int term in Eucken correlation in ECS method for t.c.
!               change reference fluid EOS for ECS-transport from BWR to FEQ
! 11-12-97  MM, enter thermal conductivity shape factor fitted to data
! 04-12-01 EWL, add Lemmon and Span short EOS
! 05-08-02 MLH, added LJ parameters, k, eta fits


#EOS               !equation of state specification
FEQ  short Helmholtz equation of state for R-142b of Lemmon and Span (2001).
?LITERATURE REFERENCE \
?Lemmon, E.W. and Span, R.,
? preliminary equation, 2001.
?\
!end of info section
142.72             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
14.34              !maximum density [mol/L]
CPP                                    !pointer to Cp0 model
100.495                                !molecular weight [g/mol]
142.72                                 !triple point temperature [K]
0.00357                                !pressure at triple point [kPa]
14.33                                  !density at triple point [mol/L]
264.0                                  !normal boiling point temperature [K]
0.2337                                 !acentric factor
410.26          4070.0    4.438        !Tc [K], pc [kPa], rhoc [mol/L]
410.26                    4.438        !reducing parameters [K, mol/L]
8.314472                               !gas constant [J/mol-K]
  12  4      0  0      0  0            !# terms, # coeff/term for:  "normal" terms, critical, spare
  0.114916E+01       0.25    1.0     0 !a(i),t(i),d(i),l(i)
 -0.363731E+01       1.25    1.0     0
  0.135156E+01       1.5     1.0     0
  0.763486E-01       0.25    3.0     0
  0.225167E-03       0.875   7.0     0
  0.114908E+00       2.375   1.0     1
  0.420780E+00       2.0     2.0     1
 -0.268499E-01       2.125   5.0     1
 -0.204649E+00       3.5     1.0     2
 -0.634408E-01       6.5     1.0     2
 -0.640323E-01       4.75    4.0     2
 -0.217753E-01      12.5     2.0     3


@EOS               !equation of state specification
ECS  Extended Corresponding States model w/ T- and rho-dependent shape factors.
?LITERATURE REFERENCE \
?Huber, M.L. and Ely, J.F.,
? "A predictive extended corresponding states model for pure and mixed
? refrigerants including an equation of state for R134a,"
? Int. J. Refrigeration, 17:18-31, 1994.\
?\
?extended by the addition of density-dependent shape factors based on
? fit by E.W. Lemmon, NIST, 09-23-96\
?\
?the ideal-gas contribution is computed with a polynomial Cp0 fit based on:\
?Rodgers, A.S.,
? TRC Thermodynamic Tables--Non-Hydrocarbons,"
? Texas A&M University, pp v-7350 and v-7351, 1989.\
?
!end of info section
142.0              !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
14.2662            !maximum density [mol/L]
CPP                !pointer to Cp0 model
R134a.fld
BWR                !pointer to reference fluid model
0.32668            !acentric factor for R134a used in shape factor correlation
0.259147           !critical compressibility for R134a used in correlation
0.237359           !acentric factor for R142b used in shape factor correlation
410.25             !critical temperature [K]
4123.0             !critical pressure [kPa]
4.32857            !critical density [mol/L] (435 kg/m**3)
2                         !number of temperature coefficients for 'f' shape factor
  0.235937284E+00  0      !alpha1 of Huber & Ely
 -0.610375264E+00  1      !alpha2 of Huber & Ely (log(Tr) term)
1                         !number of density coefficients for 'f' shape factor
  0.506906688E-02  1      !rho coefficient and power in temperature
3                         !number of temperature coefficients for 'h' shape factor
  0.550570924E+00  0      !beta1 of Huber & Ely
  0.939968487E+00  1      !beta2 of Huber & Ely (log(Tr) term)
  0.100523792E+00  1
0                         !number of density coefficients for 'h' shape factor


#AUX               !auxiliary model specification
CPP  ideal gas heat capacity function of Rodgers (1989).
?LITERATURE REFERENCES \
?Rodgers, A.S.,
? TRC Thermodynamic Tables--Non-Hydrocarbons,"
? Texas A&M University, pp v-7350 and v-7351, 1989.\
?
!end of info section
142.72             !lower temperature limit [K]
500.0              !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          1.0                       !reducing parameters for T, Cp0
  3  0    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
16.39145d0         0.00                !c(i), power of T
 0.2717191d0       1.00
-1.589334d-4       2.00


#TRN               !transport model specification
ECS  Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Perkins, R.A., Laesecke, A., and Nieto de Castro, C.A. (1992). Polarized
? transient hot wire thermal conductivity measurements.
? Fluid Phase Equilibria, 80:275-286.\
?\
?Sousa, A.T., Fialho, P.S., Nieto de Castro, C.A., Tufeu, R., and LeNeindre, B.,
? (1992). The thermal conductivity of 1-chloro-1,1-difluoroethane.
? Int. J. Thermophys., 13(3):383, 1992.
?\
?Tanaka, Y., Nakata, M., and Makita, T. (1991). Thermal conductivity of gaseous
? HFC-134a, HFC-143a, HCFC-141b, and HCFC-142b.
? Int. J. Thermophys., 12:949-963.\
?\
?Yata, J., Hori, M., Kurahashi, T., and Minamiyama, T. (1992). Thermal
? conductivity of alternative fluorocarbons in liquid phase.
? Fluid Phase Equilibria 80:287-296.
?
?Kim, S. H.; Kim, D. S.; Kim, M. S.; and Ro, S. T., The thermal
? conductivity of R22, R142b, R152a, and their mixtures in the liquid state,
? Int. J. Thermophys., 1993, 14, 937-50.
?\
?Average absolute deviations of the fit from the experimental data were:\
?  Perkins:  0.93%; Sousa:  2.53%; Tanaka:  2.77%; Yata:  1.72%; Kim: 0.76%
?  Overall:  1.99%\
?\
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?Kumagai, A. and Yokoyama, C. (2000). Revised viscosities of saturated
? liquid halocarbon refrigerants from 273 to 353 K, Int.J. Thermophys 21(4):909-912.
?
?Arnemann, M. and Kruse, H. (1991). Liquid viscosities of the non-azeotropic
? binary refrigerant mixtures r22/r114, r22/r152a, r22/r142b. Actes Congr.
? Int. Froid, 18th, v2, 379-383.
?
?Average absolute deviations of the fit from the experimental data were:\
?  Kumagai:  2.26%; Arnemann:  2.27%;
?  Overall:  2.26%\
?\
?Lennard-Jones parameters are from:
?Nabizadeh, H. and Mayinger, F. (1990) Viscosity of gaseous R123, R134a and R142b.
?  Proc. European Conference on Thermophysical Properties, 12th, Vienna, Austria
?\
?
!end of info section
142.72             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
14.34              !maximum density [mol/L]
FEQ propane.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5362             !Lennard-Jones coefficient sigma [nm] for ECS method
278.20             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2  0  0                           !number of terms in f_int term in Eucken correlation, spare1, spare2
  0.940725d-03   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
  0.988196d-06   1.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
2  0  0                           !number of terms in psi (visc shape factor): poly,spare1,spare2
 0.971602d+0   0.0   0.0   0.0    !coeff, power of Tr, power of Dr, spare
 1.91810d-02   0.0   1.0   0.0    !coeff, power of Tr, power of Dr, spare
2  0  0                           !number of terms in chi (t.c. shape factor): poly,spare1,spare2
 0.107494d+01    0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
-0.177916d-01    0.0   1.0   0.0  !coeff, power of Tr, power of Dr, spare
TK6                               !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK6  simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
142.72             !lower temperature limit [K]
500.0              !upper temperature limit [K]
60000.0            !upper pressure limit [kPa]
14.34              !maximum density [mol/L]
9  0  0  0         !# terms:  CO2-terms, spare, spare, spare
1.0     1.0     1.0      !reducing par for T, rho, tcx (mW/m-K)
0.630d0            !gnu (universal exponent)
1.239d0            !gamma (universal exponent)
1.03d0             !R0 (universal amplitude)
0.063d0            !z (universal exponent--not used for t.c., only viscosity)
1.00d0             !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
0.194d-9           !xi0 (amplitude) [m]
0.0496             !gam0 (amplitude) [-]
 0.615654d-09      !qd_inverse (modified effective cutoff parameter) [m] fit to data
 615.39d+00        !tref (reference temperature)=1.5*Tc [K]


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.
? "Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b,
? HCFC-142b, and HFC-152a,"
? Int. J. Thermophysics, 16(3):791-800, 1995.
?
!end of info section
142.72             !lower temperature limit [K]
410.26             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
410.26                      !critical temperature used by Okada & Higashi (dummy)
 0.05514     1.214          !sigma0 and n


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -