📄 dn_neigh.c
字号:
/* * DECnet An implementation of the DECnet protocol suite for the LINUX * operating system. DECnet is implemented using the BSD Socket * interface as the means of communication with the user level. * * DECnet Neighbour Functions (Adjacency Database and * On-Ethernet Cache) * * Author: Steve Whitehouse <SteveW@ACM.org> * * * Changes: * Steve Whitehouse : Fixed router listing routine * Steve Whitehouse : Added error_report functions * Steve Whitehouse : Added default router detection * Steve Whitehouse : Hop counts in outgoing messages * Steve Whitehouse : Fixed src/dst in outgoing messages so * forwarding now stands a good chance of * working. * Steve Whitehouse : Fixed neighbour states (for now anyway). * Steve Whitehouse : Made error_report functions dummies. This * is not the right place to return skbs. * */#include <linux/config.h>#include <linux/net.h>#include <linux/socket.h>#include <linux/if_arp.h>#include <linux/if_ether.h>#include <linux/init.h>#include <linux/proc_fs.h>#include <linux/string.h>#include <linux/netfilter_decnet.h>#include <linux/spinlock.h>#include <asm/atomic.h>#include <net/neighbour.h>#include <net/dst.h>#include <net/dn.h>#include <net/dn_dev.h>#include <net/dn_neigh.h>#include <net/dn_route.h>static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);static int dn_neigh_construct(struct neighbour *);static void dn_long_error_report(struct neighbour *, struct sk_buff *);static void dn_short_error_report(struct neighbour *, struct sk_buff *);static int dn_long_output(struct sk_buff *);static int dn_short_output(struct sk_buff *);static int dn_phase3_output(struct sk_buff *);/* * For talking to broadcast devices: Ethernet & PPP */static struct neigh_ops dn_long_ops = { family: AF_DECnet, error_report: dn_long_error_report, output: dn_long_output, connected_output: dn_long_output, hh_output: dev_queue_xmit, queue_xmit: dev_queue_xmit,};/* * For talking to pointopoint and multidrop devices: DDCMP and X.25 */static struct neigh_ops dn_short_ops = { family: AF_DECnet, error_report: dn_short_error_report, output: dn_short_output, connected_output: dn_short_output, hh_output: dev_queue_xmit, queue_xmit: dev_queue_xmit,};/* * For talking to DECnet phase III nodes */static struct neigh_ops dn_phase3_ops = { family: AF_DECnet, error_report: dn_short_error_report, /* Can use short version here */ output: dn_phase3_output, connected_output: dn_phase3_output, hh_output: dev_queue_xmit, queue_xmit: dev_queue_xmit};struct neigh_table dn_neigh_table = { family: PF_DECnet, entry_size: sizeof(struct dn_neigh), key_len: sizeof(dn_address), hash: dn_neigh_hash, constructor: dn_neigh_construct, id: "dn_neigh_cache", parms: { tbl: &dn_neigh_table, entries: 0, base_reachable_time: 30 * HZ, retrans_time: 1 * HZ, gc_staletime: 60 * HZ, reachable_time: 30 * HZ, delay_probe_time: 5 * HZ, queue_len: 3, ucast_probes: 0, app_probes: 0, mcast_probes: 0, anycast_delay: 0, proxy_delay: 0, proxy_qlen: 0, locktime: 1 * HZ, }, gc_interval: 30 * HZ, gc_thresh1: 128, gc_thresh2: 512, gc_thresh3: 1024,};static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev){ u32 hash_val; hash_val = *(dn_address *)pkey; hash_val ^= (hash_val >> 10); hash_val ^= (hash_val >> 3); return hash_val & NEIGH_HASHMASK;}static int dn_neigh_construct(struct neighbour *neigh){ struct net_device *dev = neigh->dev; struct dn_neigh *dn = (struct dn_neigh *)neigh; struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr; if (dn_db == NULL) return -EINVAL; if (dn_db->neigh_parms) neigh->parms = dn_db->neigh_parms; if (dn_db->use_long) neigh->ops = &dn_long_ops; else neigh->ops = &dn_short_ops; if (dn->flags & DN_NDFLAG_P3) neigh->ops = &dn_phase3_ops; neigh->nud_state = NUD_NOARP; neigh->output = neigh->ops->connected_output; if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT)) memcpy(neigh->ha, dev->broadcast, dev->addr_len); else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK)) dn_dn2eth(neigh->ha, dn->addr); else { if (net_ratelimit()) printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type); return -EINVAL; } dn->blksize = 230; return 0;}static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb){ printk(KERN_DEBUG "dn_long_error_report: called\n"); kfree_skb(skb);}static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb){ printk(KERN_DEBUG "dn_short_error_report: called\n"); kfree_skb(skb);}static int dn_neigh_output_packet(struct sk_buff *skb){ struct dst_entry *dst = skb->dst; struct neighbour *neigh = dst->neighbour; struct net_device *dev = neigh->dev; if (!dev->hard_header || dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len) >= 0) return neigh->ops->queue_xmit(skb); if (net_ratelimit()) printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n"); kfree_skb(skb); return -EINVAL;}static int dn_long_output(struct sk_buff *skb){ struct dst_entry *dst = skb->dst; struct neighbour *neigh = dst->neighbour; struct net_device *dev = neigh->dev; int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3; unsigned char *data; struct dn_long_packet *lp; struct dn_skb_cb *cb = DN_SKB_CB(skb); if (skb_headroom(skb) < headroom) { struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); if (skb2 == NULL) { if (net_ratelimit()) printk(KERN_CRIT "dn_long_output: no memory\n"); kfree_skb(skb); return -ENOBUFS; } kfree_skb(skb); skb = skb2; if (net_ratelimit()) printk(KERN_INFO "dn_long_output: Increasing headroom\n"); } data = skb_push(skb, sizeof(struct dn_long_packet) + 3); lp = (struct dn_long_packet *)(data+3); *((unsigned short *)data) = dn_htons(skb->len - 2); *(data + 2) = 1 | DN_RT_F_PF; /* Padding */ lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS)); lp->d_area = lp->d_subarea = 0; dn_dn2eth(lp->d_id, dn_ntohs(cb->dst)); lp->s_area = lp->s_subarea = 0; dn_dn2eth(lp->s_id, dn_ntohs(cb->src)); lp->nl2 = 0; lp->visit_ct = cb->hops & 0x3f; lp->s_class = 0; lp->pt = 0; skb->nh.raw = skb->data; return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);}static int dn_short_output(struct sk_buff *skb){ struct dst_entry *dst = skb->dst; struct neighbour *neigh = dst->neighbour; struct net_device *dev = neigh->dev; int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; struct dn_short_packet *sp; unsigned char *data; struct dn_skb_cb *cb = DN_SKB_CB(skb); if (skb_headroom(skb) < headroom) { struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); if (skb2 == NULL) { if (net_ratelimit()) printk(KERN_CRIT "dn_short_output: no memory\n"); kfree_skb(skb); return -ENOBUFS; } kfree_skb(skb); skb = skb2; if (net_ratelimit()) printk(KERN_INFO "dn_short_output: Increasing headroom\n"); } data = skb_push(skb, sizeof(struct dn_short_packet) + 2); *((unsigned short *)data) = dn_htons(skb->len - 2); sp = (struct dn_short_packet *)(data+2); sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS)); sp->dstnode = cb->dst; sp->srcnode = cb->src; sp->forward = cb->hops & 0x3f; skb->nh.raw = skb->data; return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);}/* * Phase 3 output is the same is short output, execpt that * it clears the area bits before transmission. */static int dn_phase3_output(struct sk_buff *skb){ struct dst_entry *dst = skb->dst; struct neighbour *neigh = dst->neighbour; struct net_device *dev = neigh->dev; int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; struct dn_short_packet *sp; unsigned char *data; struct dn_skb_cb *cb = DN_SKB_CB(skb); if (skb_headroom(skb) < headroom) { struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); if (skb2 == NULL) { if (net_ratelimit()) printk(KERN_CRIT "dn_phase3_output: no memory\n"); kfree_skb(skb);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -