⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernel-hacking.tmpl

📁 嵌入式系统设计与实例开发实验教材二源码 多线程应用程序设计 串行端口程序设计 AD接口实验 CAN总线通信实验 GPS通信实验 Linux内核移植与编译实验 IC卡读写实验 SD驱动使
💻 TMPL
📖 第 1 页 / 共 4 页
字号:
  <programlisting>if (signal_pending())         return -ERESTARTSYS;  </programlisting>  <para>   If you're doing longer computations: first think userspace. If you   <emphasis>really</emphasis> want to do it in kernel you should   regularly check if you need to give up the CPU (remember there is   cooperative multitasking per CPU).  Idiom:  </para>  <programlisting>if (current-&gt;need_resched)        schedule(); /* Will sleep */   </programlisting>  <para>   A short note on interface design: the UNIX system call motto is   "Provide mechanism not policy".  </para> </chapter> <chapter id="deadlock-recipes">  <title>Recipes for Deadlock</title>  <para>   You cannot call any routines which may sleep, unless:  </para>  <itemizedlist>   <listitem>    <para>     You are in user context.    </para>   </listitem>   <listitem>    <para>     You do not own any spinlocks.    </para>   </listitem>   <listitem>    <para>     You have interrupts enabled (actually, Andi Kleen says     that the scheduling code will enable them for you, but     that's probably not what you wanted).    </para>   </listitem>  </itemizedlist>  <para>   Note that some functions may sleep implicitly: common ones are   the user space access functions (*_user) and memory allocation   functions without <symbol>GFP_ATOMIC</symbol>.  </para>  <para>   You will eventually lock up your box if you break these rules.    </para>  <para>   Really.  </para> </chapter> <chapter id="common-routines">  <title>Common Routines</title>  <sect1 id="routines-printk">   <title>    <function>printk()</function>    <filename class=headerfile>include/linux/kernel.h</filename>   </title>   <para>    <function>printk()</function> feeds kernel messages to the    console, dmesg, and the syslog daemon.  It is useful for debugging    and reporting errors, and can be used inside interrupt context,    but use with caution: a machine which has its console flooded with    printk messages is unusable.  It uses a format string mostly    compatible with ANSI C printf, and C string concatenation to give    it a first "priority" argument:   </para>   <programlisting>printk(KERN_INFO "i = %u\n", i);   </programlisting>   <para>    See <filename class=headerfile>include/linux/kernel.h</filename>;    for other KERN_ values; these are interpreted by syslog as the    level.  Special case: for printing an IP address use   </para>   <programlisting>__u32 ipaddress;printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));   </programlisting>   <para>    <function>printk()</function> internally uses a 1K buffer and does    not catch overruns.  Make sure that will be enough.   </para>   <note>    <para>     You will know when you are a real kernel hacker     when you start typoing printf as printk in your user programs :)    </para>   </note>   <!--- From the Lions book reader department -->    <note>    <para>     Another sidenote: the original Unix Version 6 sources had a     comment on top of its printf function: "Printf should not be     used for chit-chat".  You should follow that advice.    </para>   </note>  </sect1>  <sect1 id="routines-copy">   <title>    <function>copy_[to/from]_user()</function>    /    <function>get_user()</function>    /    <function>put_user()</function>    <filename class=headerfile>include/asm/uaccess.h</filename>   </title>     <para>    <emphasis>[SLEEPS]</emphasis>   </para>   <para>    <function>put_user()</function> and <function>get_user()</function>    are used to get and put single values (such as an int, char, or    long) from and to userspace.  A pointer into userspace should    never be simply dereferenced: data should be copied using these    routines.  Both return <constant>-EFAULT</constant> or 0.   </para>   <para>    <function>copy_to_user()</function> and    <function>copy_from_user()</function> are more general: they copy    an arbitrary amount of data to and from userspace.    <caution>     <para>      Unlike <function>put_user()</function> and      <function>get_user()</function>, they return the amount of      uncopied data (ie. <returnvalue>0</returnvalue> still means      success).     </para>    </caution>    [Yes, this moronic interface makes me cringe.  Please submit a    patch and become my hero --RR.]   </para>   <para>    The functions may sleep implicitly. This should never be called    outside user context (it makes no sense), with interrupts    disabled, or a spinlock held.   </para>  </sect1>  <sect1 id="routines-kmalloc">   <title><function>kmalloc()</function>/<function>kfree()</function>    <filename class=headerfile>include/linux/slab.h</filename></title>   <para>    <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>   </para>   <para>    These routines are used to dynamically request pointer-aligned    chunks of memory, like malloc and free do in userspace, but    <function>kmalloc()</function> takes an extra flag word.    Important values:   </para>   <variablelist>    <varlistentry>     <term>      <constant>       GFP_KERNEL      </constant>     </term>     <listitem>      <para>       May sleep and swap to free memory. Only allowed in user       context, but is the most reliable way to allocate memory.      </para>     </listitem>    </varlistentry>        <varlistentry>     <term>      <constant>       GFP_ATOMIC      </constant>     </term>     <listitem>      <para>       Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,       but may be called from interrupt context. You should       <emphasis>really</emphasis> have a good out-of-memory       error-handling strategy.      </para>     </listitem>    </varlistentry>        <varlistentry>     <term>      <constant>       GFP_DMA      </constant>     </term>     <listitem>      <para>       Allocate ISA DMA lower than 16MB. If you don't know what that       is you don't need it.  Very unreliable.      </para>     </listitem>    </varlistentry>   </variablelist>   <para>    If you see a <errorname>kmem_grow: Called nonatomically from int    </errorname> warning message you called a memory allocation function    from interrupt context without <constant>GFP_ATOMIC</constant>.    You should really fix that.  Run, don't walk.   </para>   <para>    If you are allocating at least <constant>PAGE_SIZE</constant>    (<filename class=headerfile>include/asm/page.h</filename>) bytes,    consider using <function>__get_free_pages()</function>    (<filename class=headerfile>include/linux/mm.h</filename>).  It    takes an order argument (0 for page sized, 1 for double page, 2    for four pages etc.) and the same memory priority flag word as    above.   </para>   <para>    If you are allocating more than a page worth of bytes you can use    <function>vmalloc()</function>.  It'll allocate virtual memory in    the kernel map.  This block is not contiguous in physical memory,    but the <acronym>MMU</acronym> makes it look like it is for you    (so it'll only look contiguous to the CPUs, not to external device    drivers).  If you really need large physically contiguous memory    for some weird device, you have a problem: it is poorly supported    in Linux because after some time memory fragmentation in a running    kernel makes it hard.  The best way is to allocate the block early    in the boot process via the <function>alloc_bootmem()</function>    routine.   </para>   <para>    Before inventing your own cache of often-used objects consider    using a slab cache in    <filename class=headerfile>include/linux/slab.h</filename>   </para>  </sect1>  <sect1 id="routines-current">   <title><function>current</function>    <filename class=headerfile>include/asm/current.h</filename></title>   <para>    This global variable (really a macro) contains a pointer to    the current task structure, so is only valid in user context.    For example, when a process makes a system call, this will    point to the task structure of the calling process.  It is    <emphasis>not NULL</emphasis> in interrupt context.   </para>  </sect1>  <sect1 id="routines-udelay">   <title><function>udelay()</function>/<function>mdelay()</function>     <filename class=headerfile>include/asm/delay.h</filename>      <filename class=headerfile>include/linux/delay.h</filename>    </title>   <para>    The <function>udelay()</function> function can be used for small pauses.    Do not use large values with <function>udelay()</function> as you risk    overflow - the helper function <function>mdelay()</function> is useful    here, or even consider <function>schedule_timeout()</function>.   </para>   </sect1>   <sect1 id="routines-endian">   <title><function>cpu_to_be32()</function>/<function>be32_to_cpu()</function>/<function>cpu_to_le32()</function>/<function>le32_to_cpu()</function>     <filename class=headerfile>include/asm/byteorder.h</filename>    </title>   <para>    The <function>cpu_to_be32()</function> family (where the "32" can    be replaced by 64 or 16, and the "be" can be replaced by "le") are    the general way to do endian conversions in the kernel: they    return the converted value.  All variations supply the reverse as    well: <function>be32_to_cpu()</function>, etc.   </para>   <para>    There are two major variations of these functions: the pointer    variation, such as <function>cpu_to_be32p()</function>, which take    a pointer to the given type, and return the converted value.  The    other variation is the "in-situ" family, such as    <function>cpu_to_be32s()</function>, which convert value referred    to by the pointer, and return void.   </para>   </sect1>  <sect1 id="routines-local-irqs">   <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>    <filename class=headerfile>include/asm/system.h</filename>   </title>   <para>    These routines disable hard interrupts on the local CPU, and    restore them.  They are reentrant; saving the previous state in    their one <varname>unsigned long flags</varname> argument.  If you    know that interrupts are enabled, you can simply use    <function>local_irq_disable()</function> and    <function>local_irq_enable()</function>.   </para>  </sect1>  <sect1 id="routines-softirqs">   <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>    <filename class=headerfile>include/asm/softirq.h</filename></title>   <para>    These routines disable soft interrupts on the local CPU, and    restore them.  They are reentrant; if soft interrupts were    disabled before, they will still be disabled after this pair    of functions has been called.  They prevent softirqs, tasklets    and bottom halves from running on the current CPU.   </para>  </sect1>  <sect1 id="routines-processorids">   <title><function>smp_processor_id</function>()/<function>cpu_[number/logical]_map()</function>    <filename class=headerfile>include/asm/smp.h</filename></title>      <para>    <function>smp_processor_id()</function> returns the current    processor number, between 0 and <symbol>NR_CPUS</symbol> (the    maximum number of CPUs supported by Linux, currently 32).  These    values are not necessarily continuous: to get a number between 0    and <function>smp_num_cpus()</function> (the number of actual    processors in this machine), the    <function>cpu_number_map()</function> function is used to map the    processor id to a logical number.    <function>cpu_logical_map()</function> does the reverse.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -