📄 sem.c
字号:
/* * linux/ipc/sem.c * Copyright (C) 1992 Krishna Balasubramanian * Copyright (C) 1995 Eric Schenk, Bruno Haible * * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): * This code underwent a massive rewrite in order to solve some problems * with the original code. In particular the original code failed to * wake up processes that were waiting for semval to go to 0 if the * value went to 0 and was then incremented rapidly enough. In solving * this problem I have also modified the implementation so that it * processes pending operations in a FIFO manner, thus give a guarantee * that processes waiting for a lock on the semaphore won't starve * unless another locking process fails to unlock. * In addition the following two changes in behavior have been introduced: * - The original implementation of semop returned the value * last semaphore element examined on success. This does not * match the manual page specifications, and effectively * allows the user to read the semaphore even if they do not * have read permissions. The implementation now returns 0 * on success as stated in the manual page. * - There is some confusion over whether the set of undo adjustments * to be performed at exit should be done in an atomic manner. * That is, if we are attempting to decrement the semval should we queue * up and wait until we can do so legally? * The original implementation attempted to do this. * The current implementation does not do so. This is because I don't * think it is the right thing (TM) to do, and because I couldn't * see a clean way to get the old behavior with the new design. * The POSIX standard and SVID should be consulted to determine * what behavior is mandated. * * Further notes on refinement (Christoph Rohland, December 1998): * - The POSIX standard says, that the undo adjustments simply should * redo. So the current implementation is o.K. * - The previous code had two flaws: * 1) It actively gave the semaphore to the next waiting process * sleeping on the semaphore. Since this process did not have the * cpu this led to many unnecessary context switches and bad * performance. Now we only check which process should be able to * get the semaphore and if this process wants to reduce some * semaphore value we simply wake it up without doing the * operation. So it has to try to get it later. Thus e.g. the * running process may reacquire the semaphore during the current * time slice. If it only waits for zero or increases the semaphore, * we do the operation in advance and wake it up. * 2) It did not wake up all zero waiting processes. We try to do * better but only get the semops right which only wait for zero or * increase. If there are decrement operations in the operations * array we do the same as before. * * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> * * SMP-threaded, sysctl's added * (c) 1999 Manfred Spraul <manfreds@colorfullife.com> * Enforced range limit on SEM_UNDO * (c) 2001 Red Hat Inc <alan@redhat.com> */#include <linux/config.h>#include <linux/slab.h>#include <linux/spinlock.h>#include <linux/init.h>#include <linux/proc_fs.h>#include <asm/uaccess.h>#include "util.h"#define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))#define sem_unlock(id) ipc_unlock(&sem_ids,id)#define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))#define sem_checkid(sma, semid) \ ipc_checkid(&sem_ids,&sma->sem_perm,semid)#define sem_buildid(id, seq) \ ipc_buildid(&sem_ids, id, seq)static struct ipc_ids sem_ids;static int newary (key_t, int, int);static void freeary (int id);#ifdef CONFIG_PROC_FSstatic int sysvipc_sem_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data);#endif#define SEMMSL_FAST 256 /* 512 bytes on stack */#define SEMOPM_FAST 64 /* ~ 372 bytes on stack *//* * linked list protection: * sem_undo.id_next, * sem_array.sem_pending{,last}, * sem_array.sem_undo: sem_lock() for read/write * sem_undo.proc_next: only "current" is allowed to read/write that field. * */int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};#define sc_semmsl (sem_ctls[0])#define sc_semmns (sem_ctls[1])#define sc_semopm (sem_ctls[2])#define sc_semmni (sem_ctls[3])static int used_sems;void __init sem_init (void){ used_sems = 0; ipc_init_ids(&sem_ids,sc_semmni);#ifdef CONFIG_PROC_FS create_proc_read_entry("sysvipc/sem", 0, 0, sysvipc_sem_read_proc, NULL);#endif}static int newary (key_t key, int nsems, int semflg){ int id; struct sem_array *sma; int size; if (!nsems) return -EINVAL; if (used_sems + nsems > sc_semmns) return -ENOSPC; size = sizeof (*sma) + nsems * sizeof (struct sem); sma = (struct sem_array *) ipc_alloc(size); if (!sma) { return -ENOMEM; } memset (sma, 0, size); id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni); if(id == -1) { ipc_free(sma, size); return -ENOSPC; } used_sems += nsems; sma->sem_perm.mode = (semflg & S_IRWXUGO); sma->sem_perm.key = key; sma->sem_base = (struct sem *) &sma[1]; /* sma->sem_pending = NULL; */ sma->sem_pending_last = &sma->sem_pending; /* sma->undo = NULL; */ sma->sem_nsems = nsems; sma->sem_ctime = CURRENT_TIME; sem_unlock(id); return sem_buildid(id, sma->sem_perm.seq);}asmlinkage long sys_semget (key_t key, int nsems, int semflg){ int id, err = -EINVAL; struct sem_array *sma; if (nsems < 0 || nsems > sc_semmsl) return -EINVAL; down(&sem_ids.sem); if (key == IPC_PRIVATE) { err = newary(key, nsems, semflg); } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */ if (!(semflg & IPC_CREAT)) err = -ENOENT; else err = newary(key, nsems, semflg); } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) { err = -EEXIST; } else { sma = sem_lock(id); if(sma==NULL) BUG(); if (nsems > sma->sem_nsems) err = -EINVAL; else if (ipcperms(&sma->sem_perm, semflg)) err = -EACCES; else err = sem_buildid(id, sma->sem_perm.seq); sem_unlock(id); } up(&sem_ids.sem); return err;}/* doesn't acquire the sem_lock on error! */static int sem_revalidate(int semid, struct sem_array* sma, int nsems, short flg){ struct sem_array* smanew; smanew = sem_lock(semid); if(smanew==NULL) return -EIDRM; if(smanew != sma || sem_checkid(sma,semid) || sma->sem_nsems != nsems) { sem_unlock(semid); return -EIDRM; } if (ipcperms(&sma->sem_perm, flg)) { sem_unlock(semid); return -EACCES; } return 0;}/* Manage the doubly linked list sma->sem_pending as a FIFO: * insert new queue elements at the tail sma->sem_pending_last. */static inline void append_to_queue (struct sem_array * sma, struct sem_queue * q){ *(q->prev = sma->sem_pending_last) = q; *(sma->sem_pending_last = &q->next) = NULL;}static inline void prepend_to_queue (struct sem_array * sma, struct sem_queue * q){ q->next = sma->sem_pending; *(q->prev = &sma->sem_pending) = q; if (q->next) q->next->prev = &q->next; else /* sma->sem_pending_last == &sma->sem_pending */ sma->sem_pending_last = &q->next;}static inline void remove_from_queue (struct sem_array * sma, struct sem_queue * q){ *(q->prev) = q->next; if (q->next) q->next->prev = q->prev; else /* sma->sem_pending_last == &q->next */ sma->sem_pending_last = q->prev; q->prev = NULL; /* mark as removed */}/* * Determine whether a sequence of semaphore operations would succeed * all at once. Return 0 if yes, 1 if need to sleep, else return error code. */static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, int nsops, struct sem_undo *un, int pid, int do_undo){ int result, sem_op; struct sembuf *sop; struct sem * curr; for (sop = sops; sop < sops + nsops; sop++) { curr = sma->sem_base + sop->sem_num; sem_op = sop->sem_op; if (!sem_op && curr->semval) goto would_block; curr->sempid = (curr->sempid << 16) | pid; curr->semval += sem_op; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* * Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) { /* Don't undo the undo */ sop->sem_flg &= ~SEM_UNDO; goto out_of_range; } un->semadj[sop->sem_num] = undo; } if (curr->semval < 0) goto would_block; if (curr->semval > SEMVMX) goto out_of_range; } if (do_undo) { sop--; result = 0; goto undo; } sma->sem_otime = CURRENT_TIME; return 0;out_of_range: result = -ERANGE; goto undo;would_block: if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1;undo: while (sop >= sops) { curr = sma->sem_base + sop->sem_num; curr->semval -= sop->sem_op; curr->sempid >>= 16; if (sop->sem_flg & SEM_UNDO) un->semadj[sop->sem_num] += sop->sem_op; sop--; } return result;}/* Go through the pending queue for the indicated semaphore * looking for tasks that can be completed. */static void update_queue (struct sem_array * sma){ int error; struct sem_queue * q; for (q = sma->sem_pending; q; q = q->next) { if (q->status == 1) continue; /* this one was woken up before */ error = try_atomic_semop(sma, q->sops, q->nsops, q->undo, q->pid, q->alter); /* Does q->sleeper still need to sleep? */ if (error <= 0) { /* Found one, wake it up */ wake_up_process(q->sleeper); if (error == 0 && q->alter) { /* if q-> alter let it self try */ q->status = 1; return; } q->status = error; remove_from_queue(sma,q); } }}/* The following counts are associated to each semaphore: * semncnt number of tasks waiting on semval being nonzero * semzcnt number of tasks waiting on semval being zero * This model assumes that a task waits on exactly one semaphore. * Since semaphore operations are to be performed atomically, tasks actually * wait on a whole sequence of semaphores simultaneously. * The counts we return here are a rough approximation, but still * warrant that semncnt+semzcnt>0 if the task is on the pending queue. */static int count_semncnt (struct sem_array * sma, ushort semnum){ int semncnt; struct sem_queue * q; semncnt = 0; for (q = sma->sem_pending; q; q = q->next) { struct sembuf * sops = q->sops; int nsops = q->nsops; int i; for (i = 0; i < nsops; i++) if (sops[i].sem_num == semnum && (sops[i].sem_op < 0) && !(sops[i].sem_flg & IPC_NOWAIT)) semncnt++; } return semncnt;}static int count_semzcnt (struct sem_array * sma, ushort semnum){ int semzcnt; struct sem_queue * q; semzcnt = 0; for (q = sma->sem_pending; q; q = q->next) { struct sembuf * sops = q->sops; int nsops = q->nsops; int i; for (i = 0; i < nsops; i++) if (sops[i].sem_num == semnum && (sops[i].sem_op == 0) && !(sops[i].sem_flg & IPC_NOWAIT)) semzcnt++; } return semzcnt;}/* Free a semaphore set. */static void freeary (int id){ struct sem_array *sma; struct sem_undo *un; struct sem_queue *q; int size; sma = sem_rmid(id); /* Invalidate the existing undo structures for this semaphore set. * (They will be freed without any further action in sem_exit() * or during the next semop.) */ for (un = sma->undo; un; un = un->id_next) un->semid = -1; /* Wake up all pending processes and let them fail with EIDRM. */ for (q = sma->sem_pending; q; q = q->next) { q->status = -EIDRM; q->prev = NULL; wake_up_process(q->sleeper); /* doesn't sleep */ } sem_unlock(id); used_sems -= sma->sem_nsems; size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem); ipc_free(sma, size);}static unsigned long copy_semid_to_user(void *buf, struct semid64_ds *in, int version){ switch(version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct semid_ds out; ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); out.sem_otime = in->sem_otime; out.sem_ctime = in->sem_ctime; out.sem_nsems = in->sem_nsems; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; }}int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg){ int err = -EINVAL; switch(cmd) { case IPC_INFO: case SEM_INFO: { struct seminfo seminfo; int max_id; memset(&seminfo,0,sizeof(seminfo)); seminfo.semmni = sc_semmni; seminfo.semmns = sc_semmns; seminfo.semmsl = sc_semmsl; seminfo.semopm = sc_semopm; seminfo.semvmx = SEMVMX; seminfo.semmnu = SEMMNU; seminfo.semmap = SEMMAP; seminfo.semume = SEMUME; down(&sem_ids.sem); if (cmd == SEM_INFO) { seminfo.semusz = sem_ids.in_use; seminfo.semaem = used_sems; } else { seminfo.semusz = SEMUSZ; seminfo.semaem = SEMAEM; } max_id = sem_ids.max_id; up(&sem_ids.sem); if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) return -EFAULT; return (max_id < 0) ? 0: max_id; } case SEM_STAT: { struct sem_array *sma; struct semid64_ds tbuf; int id; if(semid >= sem_ids.size) return -EINVAL; memset(&tbuf,0,sizeof(tbuf)); sma = sem_lock(semid); if(sma == NULL) return -EINVAL; err = -EACCES; if (ipcperms (&sma->sem_perm, S_IRUGO)) goto out_unlock; id = sem_buildid(semid, sma->sem_perm.seq); kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); tbuf.sem_otime = sma->sem_otime; tbuf.sem_ctime = sma->sem_ctime; tbuf.sem_nsems = sma->sem_nsems; sem_unlock(semid); if (copy_semid_to_user (arg.buf, &tbuf, version)) return -EFAULT; return id; } default: return -EINVAL; } return err;out_unlock: sem_unlock(semid); return err;}int semctl_main(int semid, int semnum, int cmd, int version, union semun arg){ struct sem_array *sma; struct sem* curr; int err; ushort fast_sem_io[SEMMSL_FAST]; ushort* sem_io = fast_sem_io; int nsems; sma = sem_lock(semid); if(sma==NULL) return -EINVAL; nsems = sma->sem_nsems; err=-EIDRM; if (sem_checkid(sma,semid)) goto out_unlock; err = -EACCES; if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) goto out_unlock; switch (cmd) { case GETALL: { ushort *array = arg.array; int i; if(nsems > SEMMSL_FAST) { sem_unlock(semid); sem_io = ipc_alloc(sizeof(ushort)*nsems); if(sem_io == NULL) return -ENOMEM; err = sem_revalidate(semid, sma, nsems, S_IRUGO); if(err) goto out_free; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -