📄 pci.h
字号:
#ifndef ASMARM_PCI_H#define ASMARM_PCI_H#ifdef __KERNEL__#include <asm/arch/hardware.h>static inline void pcibios_set_master(struct pci_dev *dev){ /* No special bus mastering setup handling */}static inline void pcibios_penalize_isa_irq(int irq){ /* We don't do dynamic PCI IRQ allocation */}#include <asm/scatterlist.h>#include <asm/io.h>struct pci_dev;/* Allocate and map kernel buffer using consistent mode DMA for a device. * hwdev should be valid struct pci_dev pointer for PCI devices, * NULL for PCI-like buses (ISA, EISA). * Returns non-NULL cpu-view pointer to the buffer if successful and * sets *dma_addrp to the pci side dma address as well, else *dma_addrp * is undefined. */extern void *pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *handle);/* Free and unmap a consistent DMA buffer. * cpu_addr is what was returned from pci_alloc_consistent, * size must be the same as what as passed into pci_alloc_consistent, * and likewise dma_addr must be the same as what *dma_addrp was set to. * * References to the memory and mappings associated with cpu_addr/dma_addr * past this call are illegal. */static inline voidpci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle){ consistent_free(vaddr, size, dma_handle);}/* Map a single buffer of the indicated size for DMA in streaming mode. * The 32-bit bus address to use is returned. * * Once the device is given the dma address, the device owns this memory * until either pci_unmap_single or pci_dma_sync_single is performed. */static inline dma_addr_tpci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction){#if defined(CONFIG_SA1111) extern dma_addr_t sa1111_map_single(struct pci_dev *, void *, size_t, int); /* * for SA1111 these functions are "magic" and relocate buffers. We * only need to do these if hwdev is non-null; otherwise we expect * the buffer to already be suitable for DMA. */ if (hwdev != NULL) return sa1111_map_single(hwdev, ptr, size, direction);#elif defined(CONFIG_ARCH_S3C2410) extern dma_addr_t s3c2410_map_single(struct pci_dev *, void *, size_t, int); if (hwdev != NULL) return s3c2410_map_single(hwdev, ptr, size, direction);#endif consistent_sync(ptr, size, direction); return virt_to_bus(ptr);}/* Unmap a single streaming mode DMA translation. The dma_addr and size * must match what was provided for in a previous pci_map_single call. All * other usages are undefined. * * After this call, reads by the cpu to the buffer are guarenteed to see * whatever the device wrote there. */static inline voidpci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction){#if defined(CONFIG_SA1111) extern void sa1111_unmap_single(struct pci_dev *, dma_addr_t, size_t, int); if (hwdev != NULL) sa1111_unmap_single(hwdev, dma_addr, size, direction);#elif defined(CONFIG_ARCH_S3C2410) extern void s3c2410_unmap_single(struct pci_dev *, dma_addr_t, size_t, int); if (hwdev != NULL) s3c2410_unmap_single(hwdev, dma_addr, size, direction);#endif /* nothing to do */}/* Whether pci_unmap_{single,page} is a nop depends upon the * configuration. */#if defined(CONFIG_SA1111) || defined(CONFIG_ARCH_S3C2410)#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \ dma_addr_t ADDR_NAME;#define DECLARE_PCI_UNMAP_LEN(LEN_NAME) \ __u32 LEN_NAME;#define pci_unmap_addr(PTR, ADDR_NAME) \ ((PTR)->ADDR_NAME)#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) \ (((PTR)->ADDR_NAME) = (VAL))#define pci_unmap_len(PTR, LEN_NAME) \ ((PTR)->LEN_NAME)#define pci_unmap_len_set(PTR, LEN_NAME, VAL) \ (((PTR)->LEN_NAME) = (VAL))#else /* !(CONFIG_SA1111 || CONFIG_ARCH_S3C2410) */#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME)#define DECLARE_PCI_UNMAP_LEN(LEN_NAME)#define pci_unmap_addr(PTR, ADDR_NAME) (0)#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)#define pci_unmap_len(PTR, LEN_NAME) (0)#define pci_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)#endif /* CONFIG_SA1111 *//* Map a set of buffers described by scatterlist in streaming * mode for DMA. This is the scather-gather version of the * above pci_map_single interface. Here the scatter gather list * elements are each tagged with the appropriate dma address * and length. They are obtained via sg_dma_{address,length}(SG). * * NOTE: An implementation may be able to use a smaller number of * DMA address/length pairs than there are SG table elements. * (for example via virtual mapping capabilities) * The routine returns the number of addr/length pairs actually * used, at most nents. * * Device ownership issues as mentioned above for pci_map_single are * the same here. */static inline intpci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction){ int i; for (i = 0; i < nents; i++, sg++) { consistent_sync(sg->address, sg->length, direction); sg->dma_address = virt_to_bus(sg->address); } return nents;}/* Unmap a set of streaming mode DMA translations. * Again, cpu read rules concerning calls here are the same as for * pci_unmap_single() above. */static inline voidpci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction){ /* nothing to do */}/* Make physical memory consistent for a single * streaming mode DMA translation after a transfer. * * If you perform a pci_map_single() but wish to interrogate the * buffer using the cpu, yet do not wish to teardown the PCI dma * mapping, you must call this function before doing so. At the * next point you give the PCI dma address back to the card, the * device again owns the buffer. */static inline voidpci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction){ consistent_sync(bus_to_virt(dma_handle), size, direction);}/* Make physical memory consistent for a set of streaming * mode DMA translations after a transfer. * * The same as pci_dma_sync_single but for a scatter-gather list, * same rules and usage. */static inline voidpci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction){ int i; for (i = 0; i < nelems; i++, sg++) consistent_sync(sg->address, sg->length, direction);}/* Return whether the given PCI device DMA address mask can * be supported properly. For example, if your device can * only drive the low 24-bits during PCI bus mastering, then * you would pass 0x00ffffff as the mask to this function. */static inline int pci_dma_supported(struct pci_dev *hwdev, u64 mask){ return 1;}/* This isn't fine. */#define pci_dac_dma_supported(pci_dev, mask) (0)/* Return the index of the PCI controller for device PDEV. */#define pci_controller_num(PDEV) (0)#endif /* __KERNEL__ */ #endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -