📄 op-2.h
字号:
} while (0)#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ do { \ _FP_FRAC_DECL_4(_z); \ _FP_W_TYPE _x[2], _y[2]; \ _x[0] = X##_f0; _x[1] = X##_f1; \ _y[0] = Y##_f0; _y[1] = Y##_f1; \ \ mpn_mul_n(_z_f, _x, _y, 2); \ \ /* Normalize since we know where the msb of the multiplicands \ were (bit B), we know that the msb of the of the product is \ at either 2B or 2B-1. */ \ _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ R##_f0 = _z_f[0]; \ R##_f1 = _z_f[1]; \ } while (0)/* Do at most 120x120=240 bits multiplication using double floating point multiplication. This is useful if floating point multiplication has much bigger throughput than integer multiply. It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits between 106 and 120 only. Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. SETFETZ is a macro which will disable all FPU exceptions and set rounding towards zero, RESETFE should optionally reset it back. */#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ do { \ static const double _const[] = { \ /* 2^-24 */ 5.9604644775390625e-08, \ /* 2^-48 */ 3.5527136788005009e-15, \ /* 2^-72 */ 2.1175823681357508e-22, \ /* 2^-96 */ 1.2621774483536189e-29, \ /* 2^28 */ 2.68435456e+08, \ /* 2^4 */ 1.600000e+01, \ /* 2^-20 */ 9.5367431640625e-07, \ /* 2^-44 */ 5.6843418860808015e-14, \ /* 2^-68 */ 3.3881317890172014e-21, \ /* 2^-92 */ 2.0194839173657902e-28, \ /* 2^-116 */ 1.2037062152420224e-35}; \ double _a240, _b240, _c240, _d240, _e240, _f240, \ _g240, _h240, _i240, _j240, _k240; \ union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ _p240, _q240, _r240, _s240; \ UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ \ if (wfracbits < 106 || wfracbits > 120) \ abort(); \ \ setfetz; \ \ _e240 = (double)(long)(X##_f0 & 0xffffff); \ _j240 = (double)(long)(Y##_f0 & 0xffffff); \ _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff); \ _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff); \ _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff); \ _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff); \ _a240 = (double)(long)(X##_f1 >> 32); \ _f240 = (double)(long)(Y##_f1 >> 32); \ _e240 *= _const[3]; \ _j240 *= _const[3]; \ _d240 *= _const[2]; \ _i240 *= _const[2]; \ _c240 *= _const[1]; \ _h240 *= _const[1]; \ _b240 *= _const[0]; \ _g240 *= _const[0]; \ _s240.d = _e240*_j240;\ _r240.d = _d240*_j240 + _e240*_i240;\ _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240;\ _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\ _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\ _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ _l240.d = _a240*_g240 + _b240*_f240; \ _k240 = _a240*_f240; \ _r240.d += _s240.d; \ _q240.d += _r240.d; \ _p240.d += _q240.d; \ _o240.d += _p240.d; \ _n240.d += _o240.d; \ _m240.d += _n240.d; \ _l240.d += _m240.d; \ _k240 += _l240.d; \ _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ _o240.d += _const[7]; \ _n240.d += _const[6]; \ _m240.d += _const[5]; \ _l240.d += _const[4]; \ if (_s240.d != 0.0) _y240 = 1; \ if (_r240.d != 0.0) _y240 = 1; \ if (_q240.d != 0.0) _y240 = 1; \ if (_p240.d != 0.0) _y240 = 1; \ _t240 = (DItype)_k240; \ _u240 = _l240.i; \ _v240 = _m240.i; \ _w240 = _n240.i; \ _x240 = _o240.i; \ R##_f1 = (_t240 << (128 - (wfracbits - 1))) \ | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)); \ R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ | _y240; \ resetfe; \ } while (0)/* * Division algorithms: */#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ do { \ _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0; \ if (_FP_FRAC_GT_2(X, Y)) \ { \ _n_f2 = X##_f1 >> 1; \ _n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ _n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ } \ else \ { \ R##_e--; \ _n_f2 = X##_f1; \ _n_f1 = X##_f0; \ _n_f0 = 0; \ } \ \ /* Normalize, i.e. make the most significant bit of the \ denominator set. */ \ _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs); \ \ udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1); \ umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0); \ _r_f0 = _n_f0; \ if (_FP_FRAC_GT_2(_m, _r)) \ { \ R##_f1--; \ _FP_FRAC_ADD_2(_r, Y, _r); \ if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ { \ R##_f1--; \ _FP_FRAC_ADD_2(_r, Y, _r); \ } \ } \ _FP_FRAC_DEC_2(_r, _m); \ \ if (_r_f1 == Y##_f1) \ { \ /* This is a special case, not an optimization \ (_r/Y##_f1 would not fit into UWtype). \ As _r is guaranteed to be < Y, R##_f0 can be either \ (UWtype)-1 or (UWtype)-2. But as we know what kind \ of bits it is (sticky, guard, round), we don't care. \ We also don't care what the reminder is, because the \ guard bit will be set anyway. -jj */ \ R##_f0 = -1; \ } \ else \ { \ udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1); \ umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0); \ _r_f0 = 0; \ if (_FP_FRAC_GT_2(_m, _r)) \ { \ R##_f0--; \ _FP_FRAC_ADD_2(_r, Y, _r); \ if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ { \ R##_f0--; \ _FP_FRAC_ADD_2(_r, Y, _r); \ } \ } \ if (!_FP_FRAC_EQ_2(_r, _m)) \ R##_f0 |= _FP_WORK_STICKY; \ } \ } while (0)#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \ do { \ _FP_W_TYPE _x[4], _y[2], _z[4]; \ _y[0] = Y##_f0; _y[1] = Y##_f1; \ _x[0] = _x[3] = 0; \ if (_FP_FRAC_GT_2(X, Y)) \ { \ R##_e++; \ _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) | \ X##_f1 >> (_FP_W_TYPE_SIZE - \ (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE))); \ _x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE); \ } \ else \ { \ _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) | \ X##_f1 >> (_FP_W_TYPE_SIZE - \ (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE))); \ _x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE); \ } \ \ (void) mpn_divrem (_z, 0, _x, 4, _y, 2); \ R##_f1 = _z[1]; \ R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \ } while (0)/* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. */ #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ do { \ while (q) \ { \ T##_f1 = S##_f1 + q; \ if (T##_f1 <= X##_f1) \ { \ S##_f1 = T##_f1 + q; \ X##_f1 -= T##_f1; \ R##_f1 += q; \ } \ _FP_FRAC_SLL_2(X, 1); \ q >>= 1; \ } \ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ while (q != _FP_WORK_ROUND) \ { \ T##_f0 = S##_f0 + q; \ T##_f1 = S##_f1; \ if (T##_f1 < X##_f1 || \ (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ { \ S##_f0 = T##_f0 + q; \ S##_f1 += (T##_f0 > S##_f0); \ _FP_FRAC_DEC_2(X, T); \ R##_f0 += q; \ } \ _FP_FRAC_SLL_2(X, 1); \ q >>= 1; \ } \ if (X##_f0 | X##_f1) \ { \ if (S##_f1 < X##_f1 || \ (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ R##_f0 |= _FP_WORK_ROUND; \ R##_f0 |= _FP_WORK_STICKY; \ } \ } while (0)/* * Assembly/disassembly for converting to/from integral types. * No shifting or overflow handled here. */#define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ do { \ if (rsize <= _FP_W_TYPE_SIZE) \ r = X##_f0; \ else \ { \ r = X##_f1; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f0; \ } \ } while (0)#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ do { \ X##_f0 = r; \ X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ } while (0)/* * Convert FP values between word sizes */#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \ do { \ if (S##_c != FP_CLS_NAN) \ _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ else \ _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ D##_f = S##_f0; \ } while (0)#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \ do { \ D##_f0 = S##_f; \ D##_f1 = 0; \ _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ } while (0)#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -