⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitops.h

📁 嵌入式系统设计与实例开发实验教材二源码 多线程应用程序设计 串行端口程序设计 AD接口实验 CAN总线通信实验 GPS通信实验 Linux内核移植与编译实验 IC卡读写实验 SD驱动使
💻 H
字号:
/* asm/bitops.h for Linux/CRIS * * TODO: asm versions if speed is needed *       set_bit, clear_bit and change_bit wastes cycles being only *       macros into test_and_set_bit etc. *       kernel-doc things (**) for macros are disabled * * All bit operations return 0 if the bit was cleared before the * operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */#ifndef _CRIS_BITOPS_H#define _CRIS_BITOPS_H/* Currently this is unsuitable for consumption outside the kernel.  */#ifdef __KERNEL__ #include <asm/system.h>/* We use generic_ffs so get it; include guards resolve the possible   mutually inclusion.  */#include <linux/bitops.h>/* * Some hacks to defeat gcc over-optimizations.. */struct __dummy { unsigned long a[100]; };#define ADDR (*(struct __dummy *) addr)#define CONST_ADDR (*(const struct __dummy *) addr)/* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered.  See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */#define set_bit(nr, addr)    (void)test_and_set_bit(nr, addr)/* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered.  However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */#define clear_bit(nr, addr)  (void)test_and_clear_bit(nr, addr)/* * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */#define change_bit(nr, addr) (void)test_and_change_bit(nr, addr)/* * __change_bit - Toggle a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */#define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr)/** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered.   * It also implies a memory barrier. */static __inline__ int test_and_set_bit(int nr, void *addr){	unsigned int mask, retval;	unsigned long flags;	unsigned int *adr = (unsigned int *)addr;		adr += nr >> 5;	mask = 1 << (nr & 0x1f);	save_flags(flags);	cli();	retval = (mask & *adr) != 0;	*adr |= mask;	restore_flags(flags);	return retval;}/* * clear_bit() doesn't provide any barrier for the compiler. */#define smp_mb__before_clear_bit()      barrier()#define smp_mb__after_clear_bit()       barrier()/** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered.   * It also implies a memory barrier. */static __inline__ int test_and_clear_bit(int nr, void *addr){	unsigned int mask, retval;	unsigned long flags;	unsigned int *adr = (unsigned int *)addr;		adr += nr >> 5;	mask = 1 << (nr & 0x1f);	save_flags(flags);	cli();	retval = (mask & *adr) != 0;	*adr &= ~mask;	restore_flags(flags);	return retval;}/** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered.   * If two examples of this operation race, one can appear to succeed * but actually fail.  You must protect multiple accesses with a lock. */static __inline__ int __test_and_clear_bit(int nr, void *addr){	unsigned int mask, retval;	unsigned int *adr = (unsigned int *)addr;		adr += nr >> 5;	mask = 1 << (nr & 0x1f);	retval = (mask & *adr) != 0;	*adr &= ~mask;	return retval;}/** * test_and_change_bit - Change a bit and return its new value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered.   * It also implies a memory barrier. */static __inline__ int test_and_change_bit(int nr, void *addr){	unsigned int mask, retval;	unsigned long flags;	unsigned int *adr = (unsigned int *)addr;	adr += nr >> 5;	mask = 1 << (nr & 0x1f);	save_flags(flags);	cli();	retval = (mask & *adr) != 0;	*adr ^= mask;	restore_flags(flags);	return retval;}/* WARNING: non atomic and it can be reordered! */static __inline__ int __test_and_change_bit(int nr, void *addr){	unsigned int mask, retval;	unsigned int *adr = (unsigned int *)addr;	adr += nr >> 5;	mask = 1 << (nr & 0x1f);	retval = (mask & *adr) != 0;	*adr ^= mask;	return retval;}/** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from * * This routine doesn't need to be atomic. */static __inline__ int test_bit(int nr, const void *addr){	unsigned int mask;	unsigned int *adr = (unsigned int *)addr;		adr += nr >> 5;	mask = 1 << (nr & 0x1f);	return ((mask & *adr) != 0);}/* * Find-bit routines.. *//* * Helper functions for the core of the ff[sz] functions, wrapping the * syntactically awkward asms.  The asms compute the number of leading * zeroes of a bits-in-byte and byte-in-word and word-in-dword-swapped * number.  They differ in that the first function also inverts all bits * in the input. */static __inline__ unsigned long cris_swapnwbrlz(unsigned long w){	/* Let's just say we return the result in the same register as the	   input.  Saying we clobber the input but can return the result	   in another register:	   !  __asm__ ("swapnwbr %2\n\tlz %2,%0"	   !	      : "=r,r" (res), "=r,X" (dummy) : "1,0" (w));	   confuses gcc (sched.c, gcc from cris-dist-1.14).  */	unsigned long res;	__asm__ ("swapnwbr %0 \n\t"		 "lz %0,%0"		 : "=r" (res) : "0" (w));	return res;}static __inline__ unsigned long cris_swapwbrlz(unsigned long w){	unsigned res;	__asm__ ("swapwbr %0 \n\t"		 "lz %0,%0"		 : "=r" (res)		 : "0" (w));	return res;}/* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */static __inline__ unsigned long ffz(unsigned long w){	/* The generic_ffs function is used to avoid the asm when the	   argument is a constant.  */	return __builtin_constant_p (w)		? (~w ? (unsigned long) generic_ffs ((int) ~w) - 1 : 32)		: cris_swapnwbrlz (w);}/* * Somewhat like ffz but the equivalent of generic_ffs: in contrast to * ffz we return the first one-bit *plus one*. */static __inline__ unsigned long ffs(unsigned long w){	/* The generic_ffs function is used to avoid the asm when the	   argument is a constant.  */	return __builtin_constant_p (w)		? (unsigned long) generic_ffs ((int) w)		: w ? cris_swapwbrlz (w) + 1 : 0;}/** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */static __inline__ int find_next_zero_bit (void * addr, int size, int offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;		if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if (offset) {		tmp = *(p++);		tmp |= ~0UL >> (32-offset);		if (size < 32)			goto found_first;		if (~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while (size & ~31UL) {		if (~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if (!size)		return result;	tmp = *p;	 found_first:	tmp |= ~0UL >> size; found_middle:	return result + ffz(tmp);}/** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */#define find_first_zero_bit(addr, size) \        find_next_zero_bit((addr), (size), 0)/* * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#define ext2_set_bit                 test_and_set_bit#define ext2_clear_bit               test_and_clear_bit#define ext2_test_bit                test_bit#define ext2_find_first_zero_bit     find_first_zero_bit#define ext2_find_next_zero_bit      find_next_zero_bit/* Bitmap functions for the minix filesystem.  */#define minix_set_bit(nr,addr) test_and_set_bit(nr,addr)#define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)#endif /* __KERNEL__ */#endif /* _CRIS_BITOPS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -