⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uaccess.h

📁 嵌入式系统设计与实例开发实验教材二源码 多线程应用程序设计 串行端口程序设计 AD接口实验 CAN总线通信实验 GPS通信实验 Linux内核移植与编译实验 IC卡读写实验 SD驱动使
💻 H
📖 第 1 页 / 共 3 页
字号:
/*  * Authors:    Bjorn Wesen (bjornw@axis.com) *	       Hans-Peter Nilsson (hp@axis.com) * * $Log: uaccess.h,v $ * Revision 1.8  2001/10/29 13:01:48  bjornw * Removed unused variable tmp2 in strnlen_user * * Revision 1.7  2001/10/02 12:44:52  hp * Add support for 64-bit put_user/get_user * * Revision 1.6  2001/10/01 14:51:17  bjornw * Added register prefixes and removed underscores * * Revision 1.5  2000/10/25 03:33:21  hp * - Provide implementation for everything else but get_user and put_user; *   copying inline to/from user for constant length 0..16, 20, 24, and *   clearing for 0..4, 8, 12, 16, 20, 24, strncpy_from_user and strnlen_user *   always inline. * - Constraints for destination addr in get_user cannot be memory, only reg. * - Correct labels for PC at expected fault points. * - Nits with assembly code. * - Don't use statement expressions without value; use "do {} while (0)". * - Return correct values from __generic_... functions. * * Revision 1.4  2000/09/12 16:28:25  bjornw * * Removed comments from the get/put user asm code * * Constrains for destination addr in put_user cannot be memory, only reg * * Revision 1.3  2000/09/12 14:30:20  bjornw * MAX_ADDR_USER does not exist anymore * * Revision 1.2  2000/07/13 15:52:48  bjornw * New user-access functions * * Revision 1.1.1.1  2000/07/10 16:32:31  bjornw * CRIS architecture, working draft * * * *//* Asm:s have been tweaked (within the domain of correctness) to give   satisfactory results for "gcc version 2.96 20000427 (experimental)".   Check regularly...   Register $r9 is chosen for temporaries, being a call-clobbered register   first in line to be used (notably for local blocks), not colliding with   parameter registers.  */#ifndef _CRIS_UACCESS_H#define _CRIS_UACCESS_H#ifndef __ASSEMBLY__#include <linux/sched.h>#include <linux/errno.h>#include <asm/processor.h>#include <asm/page.h>#define VERIFY_READ	0#define VERIFY_WRITE	1/* * The fs value determines whether argument validity checking should be * performed or not.  If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */#define MAKE_MM_SEG(s)	((mm_segment_t) { (s) })/* addr_limit is the maximum accessible address for the task. we misuse * the KERNEL_DS and USER_DS values to both assign and compare the  * addr_limit values through the equally misnamed get/set_fs macros. * (see above) */#define KERNEL_DS	MAKE_MM_SEG(0xFFFFFFFF)#define USER_DS		MAKE_MM_SEG(TASK_SIZE)#define get_ds()	(KERNEL_DS)#define get_fs()	(current->addr_limit)#define set_fs(x)	(current->addr_limit = (x))#define segment_eq(a,b)	((a).seg == (b).seg)#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))#define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))#define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))#define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))extern inline int verify_area(int type, const void * addr, unsigned long size){	return access_ok(type,addr,size) ? 0 : -EFAULT;}/* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue.  No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path.  This means when everything is well, * we don't even have to jump over them.  Further, they do not intrude * on our cache or tlb entries. */struct exception_table_entry{	unsigned long insn, fixup;};/* Returns 0 if exception not found and fixup otherwise.  */extern unsigned long search_exception_table(unsigned long);/* * These are the main single-value transfer routines.  They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the uglyness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). * * As we use the same address space for kernel and user data on * CRIS, we can just do these as direct assignments.  (Of course, the * exception handling means that it's no longer "just"...) */#define get_user(x,ptr) \  __get_user_check((x),(ptr),sizeof(*(ptr)))#define put_user(x,ptr) \  __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))#define __get_user(x,ptr) \  __get_user_nocheck((x),(ptr),sizeof(*(ptr)))#define __put_user(x,ptr) \  __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))/* * The "xxx_ret" versions return constant specified in third argument, if * something bad happens. These macros can be optimized for the * case of just returning from the function xxx_ret is used. */#define put_user_ret(x,ptr,ret) \	do { if (put_user(x,ptr)) return ret; } while (0)#define get_user_ret(x,ptr,ret) \	do { if (get_user(x,ptr)) return ret; } while (0)#define __put_user_ret(x,ptr,ret) \	do { if (__put_user(x,ptr)) return ret; } while (0)#define __get_user_ret(x,ptr,ret) \	do { if (__get_user(x,ptr)) return ret; } while (0)extern long __put_user_bad(void);#define __put_user_nocheck(x,ptr,size)			\({							\	long __pu_err;					\	__put_user_size((x),(ptr),(size),__pu_err);	\	__pu_err;					\})#define __put_user_check(x,ptr,size)				\({								\	long __pu_err = -EFAULT;				\	__typeof__(*(ptr)) *__pu_addr = (ptr);			\	if (access_ok(VERIFY_WRITE,__pu_addr,size))		\		__put_user_size((x),__pu_addr,(size),__pu_err);	\	__pu_err;						\})#define __put_user_size(x,ptr,size,retval)			\do {								\	retval = 0;						\	switch (size) {						\	  case 1: __put_user_asm(x,ptr,retval,"move.b"); break;	\	  case 2: __put_user_asm(x,ptr,retval,"move.w"); break;	\	  case 4: __put_user_asm(x,ptr,retval,"move.d"); break;	\	  case 8: __put_user_asm_64(x,ptr,retval); break;	\	  default: __put_user_bad();				\	}							\} while (0)struct __large_struct { unsigned long buf[100]; };#define __m(x) (*(struct __large_struct *)(x))/* * We don't tell gcc that we are accessing memory, but this is OK * because we do not write to any memory gcc knows about, so there * are no aliasing issues. * * Note that PC at a fault is the address *after* the faulting * instruction. */#define __put_user_asm(x, addr, err, op)			\	__asm__ __volatile__(					\		"	"op" %1,[%2]\n"				\		"2:\n"						\		"	.section .fixup,\"ax\"\n"		\		"3:	move.d %3,%0\n"				\		"	jump 2b\n"				\		"	.previous\n"				\		"	.section __ex_table,\"a\"\n"		\		"	.dword 2b,3b\n"				\		"	.previous\n"				\		: "=r" (err)					\		: "r" (x), "r" (addr), "g" (-EFAULT), "0" (err))#define __put_user_asm_64(x, addr, err)				\	__asm__ __volatile__(					\		"	move.d %M1,[%2]\n"			\		"2:	move.d %H1,[%2+4]\n"			\		"4:\n"						\		"	.section .fixup,\"ax\"\n"		\		"3:	move.d %3,%0\n"				\		"	jump 4b\n"				\		"	.previous\n"				\		"	.section __ex_table,\"a\"\n"		\		"	.dword 2b,3b\n"				\		"	.dword 4b,3b\n"				\		"	.previous\n"				\		: "=r" (err)					\		: "r" (x), "r" (addr), "g" (-EFAULT), "0" (err))#define __get_user_nocheck(x,ptr,size)				\({								\	long __gu_err, __gu_val;				\	__get_user_size(__gu_val,(ptr),(size),__gu_err);	\	(x) = (__typeof__(*(ptr)))__gu_val;			\	__gu_err;						\})#define __get_user_check(x,ptr,size)					\({									\	long __gu_err = -EFAULT, __gu_val = 0;				\	const __typeof__(*(ptr)) *__gu_addr = (ptr);			\	if (access_ok(VERIFY_READ,__gu_addr,size))			\		__get_user_size(__gu_val,__gu_addr,(size),__gu_err);	\	(x) = (__typeof__(*(ptr)))__gu_val;				\	__gu_err;							\})extern long __get_user_bad(void);#define __get_user_size(x,ptr,size,retval)			\do {								\	retval = 0;						\	switch (size) {						\	  case 1: __get_user_asm(x,ptr,retval,"move.b"); break;	\	  case 2: __get_user_asm(x,ptr,retval,"move.w"); break;	\	  case 4: __get_user_asm(x,ptr,retval,"move.d"); break;	\	  case 8: __get_user_asm_64(x,ptr,retval); break;	\	  default: (x) = __get_user_bad();			\	}							\} while (0)/* See comment before __put_user_asm.  */#define __get_user_asm(x, addr, err, op)		\	__asm__ __volatile__(				\		"	"op" [%2],%1\n"			\		"2:\n"					\		"	.section .fixup,\"ax\"\n"	\		"3:	move.d %3,%0\n"			\		"	moveq 0,%1\n"			\		"	jump 2b\n"			\		"	.previous\n"			\		"	.section __ex_table,\"a\"\n"	\		"	.dword 2b,3b\n"			\		"	.previous\n"			\		: "=r" (err), "=r" (x)			\		: "r" (addr), "g" (-EFAULT), "0" (err))#define __get_user_asm_64(x, addr, err)			\	__asm__ __volatile__(				\		"	move.d [%2],%M1\n"		\		"2:	move.d [%2+4],%H1\n"		\		"4:\n"					\		"	.section .fixup,\"ax\"\n"	\		"3:	move.d %3,%0\n"			\		"	moveq 0,%1\n"			\		"	jump 4b\n"			\		"	.previous\n"			\		"	.section __ex_table,\"a\"\n"	\		"	.dword 2b,3b\n"			\		"	.dword 4b,3b\n"			\		"	.previous\n"			\		: "=r" (err), "=r" (x)			\		: "r" (addr), "g" (-EFAULT), "0" (err))/* More complex functions.  Most are inline, but some call functions that   live in lib/usercopy.c  */extern unsigned long __copy_user(void *to, const void *from, unsigned long n);extern unsigned long __copy_user_zeroing(void *to, const void *from, unsigned long n);extern unsigned long __do_clear_user(void *to, unsigned long n);/* * Copy a null terminated string from userspace. * * Must return: * -EFAULT		for an exception * count		if we hit the buffer limit * bytes copied		if we hit a null byte * (without the null byte) */static inline long         __do_strncpy_from_user(char *dst, const char *src, long count){	long res;	if (count == 0)		return 0;	/*	 * Currently, in 2.4.0-test9, most ports use a simple byte-copy loop.	 *  So do we.	 *	 *  This code is deduced from:	 *	 *	char tmp2;	 *	long tmp1, tmp3		 *	tmp1 = count;	 *	while ((*dst++ = (tmp2 = *src++)) != 0	 *	       && --tmp1)	 *	  ;	 *	 *	res = count - tmp1;	 *	 *  with tweaks.	 */	__asm__ __volatile__ (		"	move.d %3,%0\n"		"	move.b [%2+],$r9\n"		"1:	beq 2f\n"		"	move.b $r9,[%1+]\n"		"	subq 1,%0\n"		"	bne 1b\n"		"	move.b [%2+],$r9\n"		"2:	sub.d %3,%0\n"		"	neg.d %0,%0\n"		"3:\n"		"	.section .fixup,\"ax\"\n"		"4:	move.d %7,%0\n"		"	jump 3b\n"		/* There's one address for a fault at the first move, and		   two possible PC values for a fault at the second move,		   being a delay-slot filler.  However, the branch-target		   for the second move is the same as the first address.		   Just so you don't get confused...  */		"	.previous\n"		"	.section __ex_table,\"a\"\n"		"	.dword 1b,4b\n"

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -