⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 numa.c

📁 嵌入式系统设计与实例开发实验教材二源码 多线程应用程序设计 串行端口程序设计 AD接口实验 CAN总线通信实验 GPS通信实验 Linux内核移植与编译实验 IC卡读写实验 SD驱动使
💻 C
字号:
/* *  linux/arch/alpha/mm/numa.c * *  DISCONTIGMEM NUMA alpha support. * *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE */#include <linux/config.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/mm.h>#include <linux/bootmem.h>#include <linux/swap.h>#ifdef CONFIG_BLK_DEV_INITRD#include <linux/blk.h>#endif#include <asm/hwrpb.h>#include <asm/pgalloc.h>plat_pg_data_t *plat_node_data[MAX_NUMNODES];bootmem_data_t plat_node_bdata[MAX_NUMNODES];#undef DEBUG_DISCONTIG#ifdef DEBUG_DISCONTIG#define DBGDCONT(args...) printk(args)#else#define DBGDCONT(args...)#endif#define PFN_UP(x)       (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)#define PFN_DOWN(x)     ((x) >> PAGE_SHIFT)#define PFN_PHYS(x)     ((x) << PAGE_SHIFT)#define for_each_mem_cluster(memdesc, cluster, i)		\	for ((cluster) = (memdesc)->cluster, (i) = 0;		\	     (i) < (memdesc)->numclusters; (i)++, (cluster)++)static void __init show_mem_layout(void){	struct memclust_struct * cluster;	struct memdesc_struct * memdesc;	int i;	/* Find free clusters, and init and free the bootmem accordingly.  */	memdesc = (struct memdesc_struct *)	  (hwrpb->mddt_offset + (unsigned long) hwrpb);	printk("Raw memory layout:\n");	for_each_mem_cluster(memdesc, cluster, i) {		printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",		       i, cluster->usage, cluster->start_pfn,		       cluster->start_pfn + cluster->numpages);	}}static void __initsetup_memory_node(int nid, void *kernel_end){	extern unsigned long mem_size_limit;	struct memclust_struct * cluster;	struct memdesc_struct * memdesc;	unsigned long start_kernel_pfn, end_kernel_pfn;	unsigned long bootmap_size, bootmap_pages, bootmap_start;	unsigned long start, end;	unsigned long node_pfn_start, node_pfn_end;	int i;	unsigned long node_datasz = PFN_UP(sizeof(plat_pg_data_t));	int show_init = 0;	/* Find the bounds of current node */	node_pfn_start = (nid * NODE_MAX_MEM_SIZE) >> PAGE_SHIFT;	node_pfn_end = node_pfn_start + (NODE_MAX_MEM_SIZE >> PAGE_SHIFT);		/* Find free clusters, and init and free the bootmem accordingly.  */	memdesc = (struct memdesc_struct *)	  (hwrpb->mddt_offset + (unsigned long) hwrpb);	/* find the bounds of this node (min_low_pfn/max_low_pfn) */	min_low_pfn = ~0UL;	for_each_mem_cluster(memdesc, cluster, i) {		/* Bit 0 is console/PALcode reserved.  Bit 1 is		   non-volatile memory -- we might want to mark		   this for later.  */		if (cluster->usage & 3)			continue;		start = cluster->start_pfn;		end = start + cluster->numpages;		if (start >= node_pfn_end || end <= node_pfn_start)			continue;		if (!show_init) {			show_init = 1;			printk("Initialing bootmem allocator on Node ID %d\n", nid);		}		printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",		       i, cluster->usage, cluster->start_pfn,		       cluster->start_pfn + cluster->numpages);		if (start < node_pfn_start)			start = node_pfn_start;		if (end > node_pfn_end)			end = node_pfn_end;		if (start < min_low_pfn)			min_low_pfn = start;		if (end > max_low_pfn)			max_low_pfn = end;	}	if (mem_size_limit && max_low_pfn >= mem_size_limit) {		printk("setup: forcing memory size to %ldK (from %ldK).\n",		       mem_size_limit << (PAGE_SHIFT - 10),		       max_low_pfn    << (PAGE_SHIFT - 10));		max_low_pfn = mem_size_limit;	}	if (min_low_pfn >= max_low_pfn)		return;	num_physpages += max_low_pfn - min_low_pfn;	/* Cute trick to make sure our local node data is on local memory */	PLAT_NODE_DATA(nid) = (plat_pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));	/* Quasi-mark the plat_pg_data_t as in-use */	min_low_pfn += node_datasz;	if (min_low_pfn >= max_low_pfn) {		printk(" not enough mem to reserve PLAT_NODE_DATA");		return;	}	NODE_DATA(nid)->bdata = &plat_node_bdata[nid];	printk(" Detected node memory:   start %8lu, end %8lu\n",	       min_low_pfn, max_low_pfn);	DBGDCONT(" DISCONTIG: plat_node_data[%d]   is at 0x%p\n", nid, PLAT_NODE_DATA(nid));	DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);	/* Find the bounds of kernel memory.  */	start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);	end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));	bootmap_start = -1;	if (!nid && (max_low_pfn < end_kernel_pfn || min_low_pfn > start_kernel_pfn))		panic("kernel loaded out of ram");	/* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned */	min_low_pfn = (min_low_pfn + ((1UL << (MAX_ORDER-1))-1)) & ~((1UL << (MAX_ORDER-1))-1);	/* We need to know how many physically contiguous pages	   we'll need for the bootmap.  */	bootmap_pages = bootmem_bootmap_pages(max_low_pfn-min_low_pfn);	/* Now find a good region where to allocate the bootmap.  */	for_each_mem_cluster(memdesc, cluster, i) {		if (cluster->usage & 3)			continue;		start = cluster->start_pfn;		end = start + cluster->numpages;		if (start >= max_low_pfn || end <= min_low_pfn)			continue;		if (end > max_low_pfn)			end = max_low_pfn;		if (start < min_low_pfn)			start = min_low_pfn;		if (start < start_kernel_pfn) {			if (end > end_kernel_pfn			    && end - end_kernel_pfn >= bootmap_pages) {				bootmap_start = end_kernel_pfn;				break;			} else if (end > start_kernel_pfn)				end = start_kernel_pfn;		} else if (start < end_kernel_pfn)			start = end_kernel_pfn;		if (end - start >= bootmap_pages) {			bootmap_start = start;			break;		}	}	if (bootmap_start == -1)		panic("couldn't find a contigous place for the bootmap");	/* Allocate the bootmap and mark the whole MM as reserved.  */	bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,					 min_low_pfn, max_low_pfn);	DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",		 bootmap_start, bootmap_size, bootmap_pages);	/* Mark the free regions.  */	for_each_mem_cluster(memdesc, cluster, i) {		if (cluster->usage & 3)			continue;		start = cluster->start_pfn;		end = cluster->start_pfn + cluster->numpages;		if (start >= max_low_pfn || end <= min_low_pfn)			continue;		if (end > max_low_pfn)			end = max_low_pfn;		if (start < min_low_pfn)			start = min_low_pfn;		if (start < start_kernel_pfn) {			if (end > end_kernel_pfn) {				free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),					     (PFN_PHYS(start_kernel_pfn)					      - PFN_PHYS(start)));				printk(" freeing pages %ld:%ld\n",				       start, start_kernel_pfn);				start = end_kernel_pfn;			} else if (end > start_kernel_pfn)				end = start_kernel_pfn;		} else if (start < end_kernel_pfn)			start = end_kernel_pfn;		if (start >= end)			continue;		free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));		printk(" freeing pages %ld:%ld\n", start, end);	}	/* Reserve the bootmap memory.  */	reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);	printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));	numnodes++;}void __initsetup_memory(void *kernel_end){	int nid;	show_mem_layout();	numnodes = 0;	for (nid = 0; nid < MAX_NUMNODES; nid++)		setup_memory_node(nid, kernel_end);#ifdef CONFIG_BLK_DEV_INITRD	initrd_start = INITRD_START;	if (initrd_start) {		initrd_end = initrd_start+INITRD_SIZE;		printk("Initial ramdisk at: 0x%p (%lu bytes)\n",		       (void *) initrd_start, INITRD_SIZE);		if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {			printk("initrd extends beyond end of memory "			       "(0x%08lx > 0x%p)\ndisabling initrd\n",			       initrd_end,			       phys_to_virt(PFN_PHYS(max_low_pfn)));			initrd_start = initrd_end = 0;		} else {			reserve_bootmem_node(NODE_DATA(KVADDR_TO_NID(initrd_start)),					     virt_to_phys((void *)initrd_start),					     INITRD_SIZE);		}	}#endif /* CONFIG_BLK_DEV_INITRD */}void __init paging_init(void){	unsigned int    nid;	unsigned long   zones_size[MAX_NR_ZONES] = {0, };	unsigned long	dma_local_pfn;	/*	 * The old global MAX_DMA_ADDRESS per-arch API doesn't fit	 * in the NUMA model, for now we convert it to a pfn and	 * we interpret this pfn as a local per-node information.	 * This issue isn't very important since none of these machines	 * have legacy ISA slots anyways.	 */	dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;	for (nid = 0; nid < numnodes; nid++) {		unsigned long start_pfn = plat_node_bdata[nid].node_boot_start >> PAGE_SHIFT;		unsigned long end_pfn = plat_node_bdata[nid].node_low_pfn;		unsigned long lmax_mapnr;		if (dma_local_pfn >= end_pfn - start_pfn)			zones_size[ZONE_DMA] = end_pfn - start_pfn;		else {			zones_size[ZONE_DMA] = dma_local_pfn;			zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;		}		free_area_init_node(nid, NODE_DATA(nid), NULL, zones_size, start_pfn<<PAGE_SHIFT, NULL);		lmax_mapnr = PLAT_NODE_DATA_STARTNR(nid) + PLAT_NODE_DATA_SIZE(nid);		if (lmax_mapnr > max_mapnr) {			max_mapnr = lmax_mapnr;			DBGDCONT("Grow max_mapnr to %ld\n", max_mapnr);		}	}	/* Initialize the kernel's ZERO_PGE. */	memset((void *)ZERO_PGE, 0, PAGE_SIZE);}#define printkdot()					\do {							\	if (!(i++ % ((100UL*1024*1024)>>PAGE_SHIFT)))	\		printk(".");				\} while(0)#define clobber(p, size) memset((p)->virtual, 0xaa, (size))void __init mem_stress(void){	LIST_HEAD(x);	LIST_HEAD(xx);	struct page * p;	unsigned long i = 0;	printk("starting memstress");	while ((p = alloc_pages(GFP_ATOMIC, 1))) {		clobber(p, PAGE_SIZE*2);		list_add(&p->list, &x);		printkdot();	}	while ((p = alloc_page(GFP_ATOMIC))) {		clobber(p, PAGE_SIZE);		list_add(&p->list, &xx);		printkdot();	}	while (!list_empty(&x)) {		p = list_entry(x.next, struct page, list);		clobber(p, PAGE_SIZE*2);		list_del(x.next);		__free_pages(p, 1);		printkdot();	}	while (!list_empty(&xx)) {		p = list_entry(xx.next, struct page, list);		clobber(p, PAGE_SIZE);		list_del(xx.next);		__free_pages(p, 0);		printkdot();	}	printk("I'm still alive duh!\n");}#undef printkdot#undef clobbervoid __init mem_init(void){	unsigned long codesize, reservedpages, datasize, initsize, pfn;	extern int page_is_ram(unsigned long) __init;	extern char _text, _etext, _data, _edata;	extern char __init_begin, __init_end;	extern unsigned long totalram_pages;	unsigned long nid, i;	mem_map_t * lmem_map;	high_memory = (void *) __va(max_mapnr <<PAGE_SHIFT);	reservedpages = 0;	for (nid = 0; nid < numnodes; nid++) {		/*		 * This will free up the bootmem, ie, slot 0 memory		 */		totalram_pages += free_all_bootmem_node(NODE_DATA(nid));		lmem_map = NODE_MEM_MAP(nid);		pfn = NODE_DATA(nid)->node_start_paddr >> PAGE_SHIFT;		for (i = 0; i < PLAT_NODE_DATA_SIZE(nid); i++, pfn++)			if (page_is_ram(pfn) && PageReserved(lmem_map+i))				reservedpages++;	}	codesize =  (unsigned long) &_etext - (unsigned long) &_text;	datasize =  (unsigned long) &_edata - (unsigned long) &_data;	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;	printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "		"%luk data, %luk init)\n",	       nr_free_pages() << (PAGE_SHIFT-10),	       num_physpages << (PAGE_SHIFT-10),	       codesize >> 10,	       reservedpages << (PAGE_SHIFT-10),	       datasize >> 10,	       initsize >> 10);#if 0	mem_stress();#endif}voidshow_mem(void){	long i,free = 0,total = 0,reserved = 0;	long shared = 0, cached = 0;	int nid;	printk("\nMem-info:\n");	show_free_areas();	printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));	for (nid = 0; nid < numnodes; nid++) {		mem_map_t * lmem_map = NODE_MEM_MAP(nid);		i = PLAT_NODE_DATA_SIZE(nid);		while (i-- > 0) {			total++;			if (PageReserved(lmem_map+i))				reserved++;			else if (PageSwapCache(lmem_map+i))				cached++;			else if (!page_count(lmem_map+i))				free++;			else				shared += atomic_read(&lmem_map[i].count) - 1;		}	}	printk("%ld pages of RAM\n",total);	printk("%ld free pages\n",free);	printk("%ld reserved pages\n",reserved);	printk("%ld pages shared\n",shared);	printk("%ld pages swap cached\n",cached);	printk("%ld pages in page table cache\n",pgtable_cache_size);	show_buffers();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -