⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlpparameters.java

📁 利用Java实现的神经网络工具箱
💻 JAVA
字号:
/* * $RCSfile: MLPParameters.java,v $ * $Revision: 1.2 $ * $Date: 2005/02/24 21:20:29 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.architectures.mlp;import java.util.Vector;import neuralnetworktoolkit.architectures.ArchitectureParameters;/** *  */public class MLPParameters extends ArchitectureParameters {		protected int[] neurons;	protected String[] activationFunctions;	protected String initializationName;		/* 	 * @see neuralnetworktoolkit.architectures.ArchitectureParameters#configureDefault()	 */	public void configureDefault() {		activationFunctions = new String[3];		neurons = new int[4];				neurons[0] = inputSize;		neurons[1] = (inputSize + 1) / 2;		neurons[2] = (inputSize + 1) / 2;		neurons[3] = 1;				activationFunctions[0] = "Tanh";		activationFunctions[1] = "Tanh";		activationFunctions[2] = "Tanh";				initializationName = "NguyenWidrow";			} //configureDefault()		/**	 * 	 * @param activationFunctionsVector	 * @param neuronsVector	 * @param outputFunction	 * @param outputNeurons	 */	public void configureLayers(Vector activationFunctionsVector,			Vector neuronsVector, String outputFunction, int outputNeurons) {				int j;				activationFunctions = new String[activationFunctionsVector.size() + 1];		neurons = new int[neuronsVector.size() + 2];				neurons[0] = inputSize;		neurons[neurons.length - 1] = outputNeurons;		j = 1;		for(int i = 0; i < neuronsVector.size(); i++) {			neurons[j] = ((Integer)neuronsVector.elementAt(i)).intValue();			j++;					}				activationFunctions[activationFunctions.length - 1] = outputFunction;		j = 0;		for(int i = 0; i < activationFunctionsVector.size(); i++) {			activationFunctions[j] = (String)activationFunctionsVector.elementAt(i);			j++;					}			} //configureLayers()	/**	 * @return Returns the activationFunctions.	 */	public String[] getActivationFunctions() {		return activationFunctions;			} //getActivationFunctions()		/**	 * @param activationFunctions The activationFunctions to set.	 */	public void setActivationFunctions(String[] activationFunctions) {		this.activationFunctions = activationFunctions;			} //setActivationFunctions()		/**	 * @return Returns the initializationName.	 */	public String getInitializationName() {		return initializationName;			} //getInitializationName()		/**	 * @param initializationName The initializationName to set.	 */	public void setInitializationName(String initializationName) {		this.initializationName = initializationName;			} //setInitializationName()		/**	 * @return Returns the neurons.	 */	public int[] getNeurons() {		return neurons;			} //getNeurons()		/**	 * @param neurons The neurons to set.	 */	public void setNeurons(int[] neurons) {		this.neurons = neurons;			} //setNeurons()	} //MLPParameters

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -