📄 logistic.java
字号:
/* * $RCSfile: Logistic.java,v $ * $Revision: 1.1 $ * $Date: 2004/10/17 01:35:30 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.activationfunctions;/** * Logistic activation function. * * @version $Revision: 1.1 $ - $Date: 2004/10/17 01:35:30 $ * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gonçalves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class Logistic extends ActivationFunction { /** Dafault steep value. */ public static final double DEFAULT_STEEP = 1; /** Steep parameter value. */ private double steep; /** Auto-reference to provide the unique class instance. */ private static Logistic function; /** * Creates a new Logistic activation function. */ public Logistic() { functionName = "Logistic"; functionExpression = "1 / (1 + exp(-s * x))"; functionDerivativeExpression = "(s * exp(-s * s)) / ((1 + exp(-s * x)) * (1 + exp(-s * x)))"; steep = DEFAULT_STEEP; } //Logistic() /** * Returns the unique instance of <code>Logistic</code>. * * @return Unique instance of <code>Logistic</code>. */ public static Logistic instantiate() { if(function == null) { function = new Logistic(); } return function; } //instantiate() /* * @see neuralnetworktoolkit.activationfunctions.ActivationFunction#functionValue() */ public double functionValue(double input) { return 1 / (1 + Math.exp(-steep * input)); } //functionValue /* * @see neuralnetworktoolkit.activationfunctions.ActivationFunction#functionDerivative() */ public double functionDerivative(double input) { return (steep * Math.exp(-steep * input)) / ((1 + Math.exp(-steep * input)) * (1 + Math.exp(-steep * input))); } //functionDerivative() /** * Returns the steep parameter value. * * @return Returns the steep. */ public double getSteep() { return steep; } //getSteep() /** * Sets the steep parameter value. * * @param steep The steep to set. */ public void setSteep(double steep) { this.steep = steep; } //setSteep() } //Logistic
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -