📄 tanh.java
字号:
/* * $RCSfile: Tanh.java,v $ * $Revision: 1.2 $ * $Date: 2004/10/17 01:35:30 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.activationfunctions;/** * Hyperbolic Tangent activation function. * * @version $Revision: 1.2 $ - $Date: 2004/10/17 01:35:30 $ * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gonçalves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class Tanh extends ActivationFunction { /** Auto-reference to provide the unique class instance. */ private static Tanh function; /** * Creates a new Hyperbolic Tangent activation function. */ public Tanh() { functionName = "Tanh"; functionExpression = "(exp(2 * x) - 1) / (exp(2 * x) + 1)"; functionDerivativeExpression = "1 - Tanh(x)^2"; } //Tanh() /** * Returns the unique instance of <code>Tanh</code>. * * @return Unique instance of <code>Tanh</code>. */ public static Tanh instantiate() { if(function == null) { function = new Tanh(); } return function; } //instantiate() /* * @see neuralnetworktoolkit.activationfunctions.IActivationFunction#functionValue(double) */ public double functionValue(double input) { return (Math.exp(2*input)-1)/(Math.exp(2*input)+1); } //functionValue() /* * @see neuralnetworktoolkit.activationfunctions.IActivationFunction#functionDerivative(double) */ public double functionDerivative(double input) { return 1-functionValue(input)*functionValue(input); } //functionDerivative()} //Tanh
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -