📄 weights.java
字号:
/* * Weights.java 1.0 10 Jun 2004 * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras�lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.neuralnetwork;import java.io.Serializable;import java.util.Vector;/** * Class that implements the data structure that stores the neural * network weights information. <br><b>Dynamic and recurrent cases * stay unimplemented!<b> * * @version 1.0 09 Jun 2004 * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon�alves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class Weights implements Serializable { /** Indicates that weights list is dynamic or static. */ private int isDynamic; /** Indicates that weigths list is recurrent or not. */ private int isRecurrent; /** Weights list size. */ private int size = 0; /** Stores not recurrent weights list dynamically. */ private Vector dynamicWeigths; /** Stores recurrent weights list dynamically. */ private Vector dynamicRecurrentWeights; /** <i>Bias</i> term value. */ private double bias; /** Stores not recurrent weights list statically. */ private double[] staticWeights; /** Stores recurrent weights list statically. */ private double[] staticRecurrentWeights; /** * Creates a new weights list with the specified attributes. * * @param size Weights list size. * @param dynamic Indicates that the weights list is dynamic or static. * @param recurrent Indicates that the weights list is recurrent or not. */ public Weights(int size, int dynamic, int recurrent) { this.isDynamic = dynamic; this.isRecurrent = recurrent; this.size = size; // Outer switch switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // 1st Inner switch switch (isDynamic) { case NeuralNetwork.NOT_RECURRENT : { staticWeights = new double[size]; } break; case NeuralNetwork.RECURRENT : { // TODO implement this case. } break; } // end 1st Inner switch } break; case NeuralNetwork.DYNAMIC : { // TODO implement the dynamic case. // 2nd Inner switch switch (isDynamic) { case NeuralNetwork.NOT_RECURRENT : { // TODO Implement this. } break; case NeuralNetwork.RECURRENT : { // TODO implement this case. } break; } // end 2nd Inner switch } break; } // end Outer switch } //Weights() /** * Returns the weight at index. * * @param index Weight index. * * @return Weight value. */ public double getWeight(int index) { // TODO Implement dynamic case. return staticWeights[index]; } //getWeight() /** * Sets the weight value at index. * * @param index Weight index to be seted. * @param newWeight New weight value. */ public void setWeight(int index, double newWeight) { // TODO Implement dynamic case. staticWeights[index] = newWeight; } //setWeight() /** * Updates the weight value at index. * * @param index Weight index to be updated. * @param increment Value to be incremented at weight value. */ public void updateWeight(int index, double increment) { // TODO Implement dynamic case. staticWeights[index] = staticWeights[index] + increment; } //updateWeight() /** * Sets initial weights with random values. */ /*public void randomicWeightStart() { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { for (int i = 0; i < staticWeights.length; i++) { staticWeights[i] = Math.random() * 10; } } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this case. } break; } } //randomicWeightStart()*/ /** * Updates <i>bias</i> term with an increment value. * * @param increment Value to increment <i>bias</i>. */ public void updateBias(double increment){ bias = bias + increment; } //updateBias() /** * Sets the wished initial weights value. * * @param weight Initial weights value to be seted. */ public void startWeights(int weight) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { for (int i = 0; i < staticWeights.length; i++) staticWeights[i] = weight; } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //startWeights() /** * Sets initial values (randomically) to <i>bias</i> term and weights. */ /*public void randomicBiasAndWeightStart() { bias = Math.random() - 0.5; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { for (int i = 0; i < staticWeights.length; i++) staticWeights[i] = (Math.random() - 0.5) * 10; } break; case NeuralNetwork.DYNAMIC : { } break; } } //randomicBiasAndWeightStart()*/ /** * Sets initial <i>bias</i> term with a random value. */ /*public void randomicStartBias() { bias = Math.random() * 10; } //randomicStartBias()*/ /** * Sets the wished initial <i>bias</i> term value. * * @param bias Initial <i>bias</i> value to be seted. */ public void startBias(double bias) { this.bias = bias; } //startBias() /** * Sets weights list to be dynamic or static. * * @param condition Indicates that list is dynamic or static. */ public void setIsDynamic(int condition) { isDynamic = condition; } //setIsDynamic() /** * Returns <i>bias</i> term value. * * @return <i>Bias</i> term value. */ public double getBias() { return bias; } //getBias() /** * Sets <i>bias</i> term value. * * @param bias Value to be seted. */ public void setBias(double bias) { this.bias = bias; } //setBias() /** * Returns weights list size. * * @return Weights list size. */ public int getSize() { return size; } //getSize()} //Weights
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -