📄 ineuralnetwork.java
字号:
/* * $RCSfile: INeuralNetwork.java,v $ * $Revision: 1.6 $ * $Date: 2005/05/03 02:54:19 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras�lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.neuralnetwork;/** * Interface that defines some basic features of a neural network. * * @version 1.0 09 Jun 2004 * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon�alves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public interface INeuralNetwork { /** * Adds a layer to the network. * * @param layer Layer to be added. */ public void addLayer(ILayer layer); /** * Removes the layer at index. * * @param index Layer index. */ public void removeLayer(int index); /** * Returns the layer at index. * * @param index Layer index. * * @return Layer at index. */ public ILayer getLayer(int index); /** * Sets input layer values. * * @param inputValues Input values. */ public void inputLayerSetup(double[] inputValues); /** * Returns the generated values after a input set propagation. * * @return Network output. */ public double[] retrieveFinalResults(); /** * Updates all network weights, based on the increment matrix. * * @param increment Increment matrix. */ public void updateWeights(double[][] increment); /** * Returns network number of synapses. * * @return The number of synapses. */ public int numberOfSynapses(); /** * Returns the output layer. * * @return Output layer. */ public ILayer getOutputLayer(); /** * Returns the network size (number of layers). * * @return Network size. */ public int getNetworkSize(); /** * Indicates that the network have a input normalizer layer or not. * * @return Indication of the normalizer layer presence. */ //public boolean isNeuronNormalizer(); /** * Indicates that the network is dynamic or static. * * @return Indication of that the network is dynamic or static. */ public boolean isDynamic(); /** * Indicates that the network is multiconexed or not. * * @return Indication of that the network is multiconexed or not. */ public boolean isMultiConexed(); /** * Indicates that the network is recurrent or not. * * @return Indication that the network is recurrent or not. */ public boolean isRecurrent(); /** * Returns network input values. * * @return Network input values. */ public double[] getStaticInputValues(); /** * Propagates a input values set (previously configured) on the * neural network. */ public void propagateInput(); /** * Returns the error during network train. * * @return Error during network train. */ public double getError(); /** * Sets a new network error during a train. * * @param error New network error. */ public void setError(double error); public int getInputSize(); public int getOutputSize(); } //INeuralNetwork
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -