📄 neuralnetwork.java
字号:
/* * NeuralNetwork.java 1.0 09 Jun 2004 * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras�lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.neuralnetwork;import java.util.Vector;import java.io.Serializable;import neuralnetworktoolkit.activationfunctions.*;import neuralnetworktoolkit.neuralnetwork.weightinitialization.WeightInitialization;/** * Class that implements some basic features of a neural network. * * @version 1.0 09 Jun 2004 * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon�alves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class NeuralNetwork implements INeuralNetwork, Serializable { public static final int MINIMUM_SIZE = 15; public static final int DYNAMIC = 0; public static final int NOT_DYNAMIC = 1; public static final int MULTICONEXED = 0; public static final int NOT_MULTICONEXED = 1; public static final int RECURRENT = 0; public static final int NOT_RECURRENT = 1; public static final int AUTO_HIDDEN = 0; public static final int NOT_AUTO_HIDDEN = 1; public static final int NUMERICAL_INPUTS = 0; public static final int NOT_NUMERICAL_INPUTS = 1; public static final int NOMINAL_INPUTS = 0; public static final int NOT_NOMINAL_INPUTS = 1; public static final int MIXED_INPUTS = 0; public static final int NOT_MIXED_INPUTS = 1; public static final int MULTIPLE_AF = 0; public static final int NOT_MULTIPLE_AF = 1; private int isMultiConexed; private int isDynamic; private int isRecurrent; private int isAutoHidden; private int isNeuronNormalizer; private int isNumericalInputs; private int isNominalInputs; private int isMixedInputs; private int isMultipleActivationFunctions; private Vector dynamicLayers; private ILayer[] staticLayers; private Vector dynamicInputValues; private double[] staticInputValues; private double[] staticResultValues; private IFunctionCache functionCache; private int networkSize = 0; private int inputSize = 0; private int outputSize = 0; private int numberOfInternalLayers = 0; private double error; /** * Creates a neural network with default attributes. */ public NeuralNetwork() { this.isDynamic = NOT_DYNAMIC; this.isMultiConexed = MULTICONEXED; this.isRecurrent = NOT_RECURRENT; this.isAutoHidden = AUTO_HIDDEN; //this.isNeuronNormalizer = NOT_NEURON_NORMALIZER; this.isNumericalInputs = NUMERICAL_INPUTS; this.isNominalInputs = NOT_NOMINAL_INPUTS; this.isMixedInputs = NOT_MIXED_INPUTS; this.isMultipleActivationFunctions = NOT_MULTIPLE_AF; this.functionCache = new FunctionCache(); } //NeuralNetwork() /** * Creates a neural network with default attributes for a specific * input layer size. <br><b>Implementation not completed! Do not use this!</b> * * @param inputSize Input layer size. */ public NeuralNetwork(int inputSize) { this(); // TODO Finish this implementation. } //NeuralNetwork() /** * <b>Not implemented! Do not use this!</b> */ public NeuralNetwork(String configuration, int size) { // TODO Implement this. } //NeuralNetwork() /** * Creates a neural network with default attributes for the specifics * input layer size, internal layers size, output layer size, the * indication of a normalizer layer and a array of activation functions * (one for each computational layer). * * @param inputSize Input layer size. * @param internalSize Number of internal layers. * @param outputSize Output layer size. * @param layerSize Internal layers size. * @param normalizer Indication of normalizer layer. * @param functionName Activation functions array. */ public NeuralNetwork(int inputSize, int internalSize, int outputSize, int layerSize, int normalizer, WeightInitialization initialization, String[] functionName) { this(); this.isNeuronNormalizer = normalizer; this.inputSize = inputSize; this.outputSize = outputSize; for (int i=0; i < functionName.length; i++) { functionCache.addActivationFunction(functionName[i]); } int internalLayerSize = layerSize; this.numberOfInternalLayers = internalSize; this.staticResultValues = new double[outputSize]; int control = 0; networkSize = internalSize + 1; this.staticLayers = new ILayer[networkSize]; int numPesos = internalLayerSize; for (int i = (networkSize - 2); i >= control; i--) { if (i==control) { numPesos = inputSize; } staticLayers[i] = new Layer( numPesos, internalLayerSize, NOT_DYNAMIC, functionCache.getActivationFunction(functionName[i])); } staticLayers[networkSize - 1] = new Layer( internalLayerSize, outputSize, NOT_DYNAMIC, functionCache.getActivationFunction(functionName[networkSize-1])); initialization.initialize(this); } //NeuralNetwork() /** * Creates a neural network with default attributes for the specifics * input layer size, internal layers size, output layer size, the * indication of a normalizer layer and a array of activation functions * (one for each computational layer). * * @param inputSize Input layer size. * @param internalSize Number of internal layers. * @param outputSize Output layer size. * @param layerSize Internal layers size. * @param normalizer Indication of normalizer layer. * @param functionName Activation functions array. */ public NeuralNetwork(int[] structure, WeightInitialization initialization,String[] functionName) { this(); this.inputSize = structure[0]; this.outputSize = structure[structure.length-1]; for (int i=0; i < functionName.length; i++) { functionCache.addActivationFunction(functionName[i]); } this.numberOfInternalLayers = structure.length - 2; this.staticResultValues = new double[outputSize]; int control = 0; networkSize = structure.length - 1; this.staticLayers = new ILayer[networkSize]; int numPesos; for (int i = (networkSize - 1); i >= control; i--) { numPesos = structure[i]; staticLayers[i] = new Layer( numPesos, structure[i+1], NOT_DYNAMIC, functionCache.getActivationFunction(functionName[i])); } initialization.initialize(this); } //NeuralNetwork() /** * Creates a neural network with default attributes for the specifics * input layer size, output layer size, the indication of a normalizer * layer and a array of activation functions (one for each computational * layer). * * @param inputSize Input layer size. * @param outputSize Output layer size. * @param normalizer Indication of normalizer layer. * @param functionName Activation functions array. */ public NeuralNetwork(int inputSize, int outputSize, int normalizer, String functionName) { this(); this.inputSize = inputSize; this.outputSize = outputSize; IActivationFunction activationFunction; this.isNeuronNormalizer = normalizer; functionCache.addActivationFunction(functionName); activationFunction = functionCache.getActivationFunction(functionName); networkSize = 0; int internalLayerSize = 0; this.numberOfInternalLayers = 1; this.staticResultValues = new double[outputSize]; if ((inputSize + outputSize) / 2 > MINIMUM_SIZE) { internalLayerSize = (inputSize + outputSize) / 2; } else { internalLayerSize = MINIMUM_SIZE; } networkSize = 2; this.staticLayers = new ILayer[2]; staticLayers[networkSize - 2] = new Layer( inputSize, internalLayerSize, NOT_DYNAMIC, activationFunction); staticLayers[networkSize - 1] = new Layer( internalLayerSize, outputSize, NOT_DYNAMIC, activationFunction); // TODO is the the network built?. } //NeuralNetwork() /* (non-Javadoc) * @see neuralnetworktoolkit.INeuralNetwork#addLayer(neuralnetworktoolkit.ILayer) */ public void addLayer(ILayer layer) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // TODO Implement this. } break; case NeuralNetwork.DYNAMIC : { dynamicLayers.addElement(layer); } break; } } //addLayer() /* (non-Javadoc) * @see neuralnetworktoolkit.INeuralNetwork#removeLayer(int) */ public void removeLayer(int index) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // TODO Implement this. } break; case NeuralNetwork.DYNAMIC : { dynamicLayers.removeElementAt(index); } break; } } //removeLayer() /* (non-Javadoc) * @see neuralnetworktoolkit.INeuralNetwork#getLayer(int) */ public ILayer getLayer(int index) { ILayer result = null; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { result = (ILayer) staticLayers[index]; } break; case NeuralNetwork.DYNAMIC : { result = (ILayer) dynamicLayers.elementAt(index); } break; } return result; } //getLayer() /* (non-Javadoc) * @see neuralnetworktoolkit.INeuralNetwork#inputLayerSetup(double[]) */ public void inputLayerSetup(double[] inputValues) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticInputValues = inputValues; } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //inputLayerSetup() /** * Creates a normalizer layer. * * @param size Layer size. * * @return Normalize layer. */ private ILayer createNormalizerLayer(int size) { ILayer normalizer = null; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // TODO create normalizer layer. } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } return normalizer; } //createNormalizerLayer() /* (non-Javadoc) * @see neuralnetworktoolkit.INeuralNetwork#propagateInput() */ public void propagateInput() { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { switch (isMultiConexed) { case NeuralNetwork.MULTICONEXED : { // For the first layer: for (int i = 0; i < staticLayers[0].getLayerSize(); i++) { double input = 0; for (int j = 0; j < staticInputValues.length; j++) { input = input + staticInputValues[j] * staticLayers[0].getWeight( j, i); } input = input + staticLayers[0].getBias(i); staticLayers[0].getNeuron(i).setInput( input); staticLayers[0] .getNeuron(i) .calculateOutputValue(); } // For each remaining layer: for (int i = 1; i < staticLayers.length; i++) { // For each neuron: for (int j = 0; j < staticLayers[i].getLayerSize();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -