📄 layer.java
字号:
/* * Layer.java 1.0 09 Jun 2004 * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras�lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.neuralnetwork;import java.io.Serializable;import java.util.Vector;import neuralnetworktoolkit.activationfunctions.*;/** * Class that implements some basic features of a layer. * * @version 1.0 09 Jun 2004 * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon�alves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class Layer implements ILayer, Serializable { /** Indicates that layer is normalizer or not. */ private int isNormalizer; /** Indicates that layer is dynamic or static. */ private int isDynamic; /** Stores neurons dynamically. */ private Vector dynamicNeurons; /** Stores neurons statically. */ private INeuron[] staticNeurons; /** Stores weights dynamically. */ private Vector dynamicWeights; /** Stores weights statically. */ private Weights[] staticWeights; /** Layer size. */ private int layerSize = 0; /** * Layer activation function (all layer neurons have the same * activation function, default). */ private IActivationFunction activationFunction; /** * Creates a new layer with the specified attributes. * * @param lastLayerSize Preceding layer size. * @param size Layer size. * @param normalizer Indicates that layer is normalizer or not. * @param dynamic Indicates that layer is dynamic or static. * @param activationFunction Layer activation function. */ public Layer(int lastLayerSize, int size, int dynamic, IActivationFunction activationFunction) { this.isDynamic = dynamic; this.activationFunction = activationFunction; this.layerSize = size; // Outer switch // 1st Inner switch switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticNeurons = new INeuron[size]; staticWeights = new Weights[size]; for (int i = 0; i < size; i++) { staticNeurons[i] = new Neuron(activationFunction); staticWeights[i] = new Weights( lastLayerSize, NeuralNetwork.NOT_DYNAMIC, NeuralNetwork.NOT_RECURRENT); /*staticWeights[i] .randomicBiasAndWeightStart();*/ } } break; case NeuralNetwork.DYNAMIC : { // TODO implement this case. } break; } // end 1st Inner switch } //Layer() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#addNeuron(neuralnetworktoolkit.INeuron) */ public void addNeuron(INeuron neuron) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // TODO Implement this. } break; case NeuralNetwork.DYNAMIC : { dynamicNeurons.addElement(neuron); } break; } } //addNeuron() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#removeNeuron(int) */ public void removeNeuron(int index) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { // TODO Implement this. } break; case NeuralNetwork.DYNAMIC : { dynamicNeurons.removeElementAt(index); } break; } } //removeNeuron() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#getNeuron(int) */ public INeuron getNeuron(int index) { INeuron result = null; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { result = (INeuron) staticNeurons[index]; } break; case NeuralNetwork.DYNAMIC : { result = (INeuron) dynamicNeurons.elementAt(index); } break; } return result; } //getNeuron() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#setWeight(double, int, int) */ public void setWeight(double weight, int inputNeuron, int neuron) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticWeights[neuron].setWeight(inputNeuron, weight); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //setWeight() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#getWeight(int, int) */ public double getWeight(int inputNeuron, int neuron) { // TODO Auto-generated method stub double result = 0; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { result = staticWeights[neuron].getWeight(inputNeuron); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } return result; } //getWeight() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#updateWeight(double, int, int) */ public void updateWeight(double increment, int inputNeuron, int neuron) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticWeights[neuron].updateWeight(inputNeuron, increment); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //updateWeight() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#updateWeight(double, int, int) */ public void updateBias(double increment, int neuron) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticWeights[neuron].updateBias(increment); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //updateBias() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#setWeight(double, int, int) */ public void setBias(double value, int neuron) { switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { staticWeights[neuron].setBias(value); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } } //updateBias() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#setIsDynamic(int) */ public void setIsDynamic(int condition) { isDynamic = condition; } //setIsDynamic() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#getLayerSize() */ public int getLayerSize() { return layerSize; } //getLayerSize() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#getBias(int) */ public double getBias(int index) { double result = 0; switch (isDynamic) { case NeuralNetwork.NOT_DYNAMIC : { result = staticWeights[index].getBias(); } break; case NeuralNetwork.DYNAMIC : { // TODO Implement this. } break; } return result; } //getBias() /* (non-Javadoc) * @see neuralnetworktoolkit.ILayer#getWeightSize(int) */ public int getWeightSize(int index) { // TODO implement the general case. return staticWeights[index].getSize(); } //getWeightSize()} //Layer
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -