⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 onlineadaptivelearningratemomentumbackpropagation.java

📁 利用Java实现的神经网络工具箱
💻 JAVA
字号:
/* * $RCSfile: OnLineAdaptiveLearningRateMomentumBackPropagation.java,v $ * $Revision: 1.2 $ * $Date: 2005/05/08 03:08:54 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras铆lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.methods.gradientbased.backpropagation;import neuralnetworktoolkit.StatisticalResults;import neuralnetworktoolkit.math.NeuralMath;import neuralnetworktoolkit.methods.TrainingParameters;import neuralnetworktoolkit.neuralnetwork.INeuralNetwork;/** * An implementation of backpropagation training method. <br> *   * @version $Revision: 1.2 $ - $Date: 2005/05/08 03:08:54 $ *  * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon莽alves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class OnLineAdaptiveLearningRateMomentumBackPropagation extends ModifiedBackPropagation {		public OnLineAdaptiveLearningRateMomentumBackPropagation() {		super();		instantaneousError = 1000000000;	}		/* (non-Javadoc)	 * @see neuralnetworktoolkit.methods.ITrainingMethod#train(neuralnetworktoolkit.neuralnetwork.INeuralNetwork, neuralnetworktoolkit.methods.TrainingParameters)	 */	public StatisticalResults train(INeuralNetwork neuralNetwork,			TrainingParameters parameters) {			BackPropagationParameters param;				param = (BackPropagationParameters) parameters;		numberOfSynapses = neuralNetwork.numberOfSynapses();		errorGoal = param.getError();		maximumNumberOfEpochs = param.getMaxEpochs();		learningRate = param.getLearningRate();		alpha = param.getAlpha();		lrMultiplier = param.getLrMultiplier();		inicio = System.currentTimeMillis();				do {			for (int i = 0; i < param.getInputs().length; i++) {				neuralNetwork.inputLayerSetup(param.getInputs()[i]);				neuralNetwork.propagateInput();				calculateNeuronDeltas(neuralNetwork, param.getOutputs()[i]);				derivativesVector = calculateDerivativesVector(neuralNetwork);				deltaW = NeuralMath.constantTimesMatrix(-learningRate, derivativesVector);								if ( (!firstIteration)&&(successfullIteration) ) {					deltaW = NeuralMath.matrixSum(deltaW, NeuralMath.constantTimesMatrix(alpha, previousDeltaW));									} else {					firstIteration = false;														}								neuralNetwork.updateWeights(deltaW);								instantaneousError = calculateTotalError(neuralNetwork, param.getInputs(), param.getOutputs());				if ( instantaneousError < totalErrorEnergy ) {					//System.out.println("menor");					previousDeltaW = (double[][] )deltaW.clone();					learningRate = learningRate*lrMultiplier;					totalErrorEnergy = instantaneousError;					successfullIteration = true;				} else {					//System.out.println("maior");					deltaW = NeuralMath.constantTimesMatrix(-1, deltaW);					neuralNetwork.updateWeights(deltaW);					learningRate = learningRate/lrMultiplier;					//successfullIteration = false;				}			}			totalErrorEnergy = calculateTotalError(neuralNetwork, param					.getInputs(), param.getOutputs());			numberOfEpochs++;			if ((numberOfEpochs) % 1/* (maximumNumberOfEpochs/100) */== 0) {				System.out.println("N閙ero de 蓀ocas: " + numberOfEpochs);				System.out.println("Erro atual: " + totalErrorEnergy);			}		} while (((totalErrorEnergy / param.getInputs().length) > errorGoal)				&& (numberOfEpochs < maximumNumberOfEpochs) && (goAhead = true));				fim = System.currentTimeMillis();				neuralNetwork.setError(totalErrorEnergy / param.getInputs().length);				results.setError(totalErrorEnergy / param.getInputs().length);		results.setNumberOfEpochs(numberOfEpochs);		numberOfEpochs = 0;		results.setTrainingTime((fim - inicio) / 1000);				return results;			}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -