📄 batchbackpropagation.java
字号:
/* * $RCSfile: BatchBackPropagation.java,v $ * $Revision: 1.4 $ * $Date: 2005/05/08 02:16:28 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Bras铆lia * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.methods.gradientbased.backpropagation;import neuralnetworktoolkit.*;import neuralnetworktoolkit.math.NeuralMath;import neuralnetworktoolkit.methods.*;import neuralnetworktoolkit.neuralnetwork.*;/** * An implementation of backpropagation training method. <br> * * @version $Revision: 1.4 $ - $Date: 2005/05/08 02:16:28 $ * * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gon鏰lves</a> * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> */public class BatchBackPropagation extends BackPropagationModel { /** * * */ public BatchBackPropagation() { super(); } /** * Trains a neural network with backpropagation method. * * @param neuralNetwork * Neural network to be trained. * @param Backpropagation paremeters. * * @return Statistical information about network learning. */ public StatisticalResults train(INeuralNetwork neuralNetwork, TrainingParameters parameters) { // TODO Erase instrumentation code. BackPropagationParameters param; param = (BackPropagationParameters) parameters; numberOfSynapses = neuralNetwork.numberOfSynapses(); errorGoal = param.getError(); maximumNumberOfEpochs = param.getMaxEpochs(); learningRate = param.getLearningRate(); inicio = System.currentTimeMillis(); do { // TODO improve this. deltaW = new double[neuralNetwork.numberOfSynapses()][1]; for (int i = 0; i < param.getInputs().length; i++) { neuralNetwork.inputLayerSetup(param.getInputs()[i]); neuralNetwork.propagateInput(); calculateNeuronDeltas(neuralNetwork, param.getOutputs()[i]); derivativesVector = calculateDerivativesVector(neuralNetwork); instantDeltaW = NeuralMath.constantTimesMatrix(-learningRate, derivativesVector); deltaW = NeuralMath.matrixSum(deltaW, instantDeltaW); } neuralNetwork.updateWeights(deltaW); totalErrorEnergy = calculateTotalError(neuralNetwork, param.getInputs(), param.getOutputs()); numberOfEpochs++; if ( (numberOfEpochs) % /*(maximumNumberOfEpochs/100)*/1 == 0) { System.out.println("N鷐ero de 蓀ocas: " + numberOfEpochs); System.out.println("Erro atual: " + totalErrorEnergy); } } while (((totalErrorEnergy / param.getInputs().length) > errorGoal) && (numberOfEpochs < maximumNumberOfEpochs) && (goAhead = true)); fim = System.currentTimeMillis(); neuralNetwork.setError(totalErrorEnergy / param.getInputs().length); results.setError(totalErrorEnergy / param.getInputs().length); results.setNumberOfEpochs(numberOfEpochs); numberOfEpochs = 0; results.setTrainingTime((fim - inicio) / 1000); return results; } //train() } //BatchBackPropagation
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -