⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 euclideannorm1.java

📁 利用Java实现的神经网络工具箱
💻 JAVA
字号:
/* * $RCSfile: EuclideanNorm1.java,v $ * $Revision: 1.2 $ * $Date: 2004/10/24 03:05:29 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.normalization;/** * Euclidean Norm 1 normalization.<br> * <br> * Implementation according the description avaiable in * <a href="http://www.ivorix.com/en/products/tech/norm/"> * http://www.ivorix.com/en/products/tech/norm/</a>. *  * @version $Revision: 1.2 $ - $Date: 2004/10/24 03:05:29 $ *  * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gonçalves</a> */public class EuclideanNorm1 extends Normalization {	private double[] quadraticSum;	/* 	 * @see neuralnetworktoolkit.normalization.INormalization#normalize(double[][])	 */	public double[][] normalize(double[][] originalData) {		double[][] normalizedData;				if (quadraticSum == null) {			setupParameters(originalData);					}		normalizedData = transform(originalData);				return normalizedData;			} //normalize()	/* 	 * @see neuralnetworktoolkit.normalization.INormalization#unnormalize(double[][])	 */	public double[][] unnormalize(double[][] normalizedData) {		double[][] originalData;				originalData = new double[normalizedData.length][normalizedData[0].length];				for (int j = 0; j < normalizedData[0].length; j++) {			for (int i = 0; i < normalizedData.length; i++) {				originalData[i][j] = normalizedData[i][j] * quadraticSum[j]; 							}		}		return originalData;			} //unnormalize()	/* 	 * @see neuralnetworktoolkit.normalization.INormalization#setupParameters(double[][])	 */	public void setupParameters(double[][] originalData) {		computeQuadraticSum(originalData);	} //setupParameters()		/* 	 * @see neuralnetworktoolkit.normalization.Normalization#transform(double[][])	 */	protected double[][] transform(double[][] originalData) {		double[][] normalizedData;				normalizedData = new double[originalData.length][originalData[0].length];				for (int j = 0; j < originalData[0].length; j++) {			for (int i = 0; i < originalData.length; i++) {				normalizedData[i][j] = originalData[i][j] / quadraticSum[j];			}		}		return normalizedData;			} //transform()		/**	 * @param originalData	 */	private void computeQuadraticSum(double[][] originalData) {		quadraticSum = new double[originalData[0].length];				for (int j = 0; j < originalData[0].length; j++) {			for (int i = 0; i < originalData.length; i++) {				quadraticSum[j] += originalData[i][j] * originalData[i][j];			}								}			} //computeQuadraticSum()	/**	 * @return Returns the quadraticSum.	 */	public double[] getQuadraticSum() {		return quadraticSum;			} //getQuadraticSum()	} //EuclideanNorm1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -