⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 backpropagationpanel.java

📁 利用Java实现的神经网络工具箱
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
		errorPanel = new JPanel();		errorPanel.setLayout(new BorderLayout());		errorPanel.add(errorLabel, BorderLayout.NORTH);		errorPanel.add(errorSpinner, BorderLayout.CENTER);				stopConditionPanel = new JPanel();		stopConditionPanel.setLayout(new GridBagLayout());		stopConditionPanel.add(maxEpochsPanel,				new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.VERTICAL, borderInsets,						67, 0));		stopConditionPanel.add(errorPanel,				new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.VERTICAL, borderInsets,						67, 0));		stopConditionPanel.setBorder(new TitledBorder(resource				.getString("stopCondition")));				lrMultiplierLabel = new JLabel(resource.getString("lrMultiplier"));		lrMultiplierSpinnerModel = new SpinnerNumberModel(10, 1e-30,				1e10, 0.001);		lrMultiplierSpinner = new JSpinner(lrMultiplierSpinnerModel);		lrMultiplierPanel = new JPanel();		lrMultiplierPanel.setLayout(new BorderLayout());		lrMultiplierPanel.add(lrMultiplierLabel, BorderLayout.NORTH);		lrMultiplierPanel.add(lrMultiplierSpinner, BorderLayout.CENTER);				learningRateLabel = new JLabel(resource.getString("learningRate"));		learningRateSpinnerModel = new SpinnerNumberModel(0.3, 1e-30, 1, 0.001);		learningRateSpinner = new JSpinner(learningRateSpinnerModel);		learningRatePanel = new JPanel();		learningRatePanel.setLayout(new BorderLayout());		learningRatePanel.add(learningRateLabel, BorderLayout.NORTH);		learningRatePanel.add(learningRateSpinner, BorderLayout.CENTER);				alphaLabel = new JLabel(resource.getString("alpha"));		alphaSpinnerModel = new SpinnerNumberModel(0.2, 1e-30, 1, 0.001);		alphaSpinner = new JSpinner(alphaSpinnerModel);		alphaPanel = new JPanel();		alphaPanel.setLayout(new BorderLayout());		alphaPanel.add(alphaLabel, BorderLayout.NORTH);		alphaPanel.add(alphaSpinner, BorderLayout.CENTER);				backPropagationParametersPanel = new JPanel();		backPropagationParametersPanel.setLayout(new GridBagLayout());		backPropagationParametersPanel.add(lrMultiplierPanel,				new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.VERTICAL, borderInsets,						67, 0));				backPropagationParametersPanel.add(learningRatePanel,				new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.VERTICAL, borderInsets,						67, 0));		backPropagationParametersPanel.add(alphaPanel,				new GridBagConstraints(0, 2, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.VERTICAL, borderInsets,						67, 0));		backPropagationParametersPanel.setBorder(new TitledBorder(resource				.getString("backPropagationParameters")));				this.setLayout(new GridBagLayout());		this.add(backPropagationVariationPanel,				new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.HORIZONTAL, borderInsets,						67, 0));		this.add(stopConditionPanel,				new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.HORIZONTAL, borderInsets,						67, 0));		this.add(backPropagationParametersPanel,				new GridBagConstraints(0, 2, 1, 1, 1.0, 1.0,						GridBagConstraints.CENTER,						GridBagConstraints.HORIZONTAL, borderInsets,						67, 0));			} //GaussNewtonPanel()	/* 	 * @see neuralnetworktoolkit.gui.options.method.TrainingMethodPanel#initializeComponents(boolean)	 */	public void initializeComponents(boolean verify) {		BackPropagationParameters bpParameters;				if(verify) {			bpParameters = (BackPropagationParameters) parameters;						if (bpParameters.getMethod().equals(methods[0])) {				backPropagationVariationGroup.setSelected(						batchRadio.getModel(), true);				setBackpropagationParametersEnabled(LEARNING_RATE_ENABLED);			} else if (bpParameters.getMethod().equals(methods[1])) {				backPropagationVariationGroup.setSelected(						batchAdaptiveLearningRateRadio.getModel(), true);				setBackpropagationParametersEnabled(ALL_ENABLED);			} else if (bpParameters.getMethod().equals(methods[2])) {				backPropagationVariationGroup.setSelected(batchMomentumRadio						.getModel(), true);				setBackpropagationParametersEnabled(MULTIPLIER_DISABLED);			} else if (bpParameters.getMethod().equals(methods[3])) {				backPropagationVariationGroup.setSelected(onLineRadio						.getModel(), true);				setBackpropagationParametersEnabled(LEARNING_RATE_ENABLED);			} else if (bpParameters.getMethod().equals(methods[4])) {				backPropagationVariationGroup.setSelected(						onLineAdaptiveLearningRadio.getModel(), true);				setBackpropagationParametersEnabled(ALL_ENABLED);			} else if (bpParameters.getMethod().equals(methods[5])) {				backPropagationVariationGroup.setSelected(onLineMomentumRadio						.getModel(), true);				setBackpropagationParametersEnabled(MULTIPLIER_DISABLED);			}			errorSpinner.setValue(new Double(bpParameters.getError()));			maxEpochsSpinner.setValue(new Integer(bpParameters.getMaxEpochs()));			lrMultiplierSpinner.setValue(new Double(bpParameters					.getLrMultiplier()));			learningRateSpinner.setValue(new Double(bpParameters					.getLearningRate()));			alphaSpinner.setValue(new Double(bpParameters.getAlpha()));					}			} //initializeComponents()		/**	 * @return Returns the parameters.	 */	public TrainingParameters getParameters() {		BackPropagationParameters bpParameters;				bpParameters = (BackPropagationParameters) parameters;				if(batchRadio.isSelected()) {			bpParameters.setMethod(methods[0]);					} else if(batchAdaptiveLearningRateRadio.isSelected()) {			bpParameters.setMethod(methods[1]);					} else if(batchMomentumRadio.isSelected()) {			bpParameters.setMethod(methods[2]);					} else if(onLineRadio.isSelected()) {			bpParameters.setMethod(methods[3]);					} else if(onLineAdaptiveLearningRadio.isSelected()) {			bpParameters.setMethod(methods[4]);					} else if(onLineMomentumRadio.isSelected()) {			bpParameters.setMethod(methods[5]);					}		bpParameters.setError(((Double) errorSpinner.getValue()).doubleValue());		bpParameters.setMaxEpochs(((Integer) maxEpochsSpinner.getValue())				.intValue());		bpParameters.setLearningRate(((Double) learningRateSpinner.getValue())				.doubleValue());		bpParameters.setAlpha(((Double) alphaSpinner.getValue()).doubleValue());		bpParameters.setLrMultiplier(((Double) lrMultiplierSpinner.getValue())				.doubleValue());				return bpParameters;			} //getParameters()		/**	 * 	 * @param type	 */	private void setBackpropagationParametersEnabled(int type) {				switch (type) {		case ALL_ENABLED: {			lrMultiplierSpinner.setEnabled(true);			learningRateSpinner.setEnabled(true);			alphaSpinner.setEnabled(true);					} break;		case LEARNING_RATE_ENABLED: {			lrMultiplierSpinner.setEnabled(false);			learningRateSpinner.setEnabled(true);			alphaSpinner.setEnabled(false);					} break;		case MULTIPLIER_DISABLED: {			lrMultiplierSpinner.setEnabled(false);			learningRateSpinner.setEnabled(true);			alphaSpinner.setEnabled(true);					} break;		default: {			lrMultiplierSpinner.setEnabled(true);			learningRateSpinner.setEnabled(true);			alphaSpinner.setEnabled(true);					} break;				}			} //setBackpropagationParametersEnabled()} //BackPropagationPanel

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -