📄 .#backpropagationpanel.java.1.2
字号:
/* * $RCSfile: BackPropagationPanel.java,v $ * $Revision: 1.2 $ * $Date: 2005/02/24 21:20:29 $ * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */package neuralnetworktoolkit.gui.options.method;import java.awt.BorderLayout;import java.awt.GridBagConstraints;import java.awt.GridBagLayout;import java.awt.Insets;import java.util.ResourceBundle;import javax.swing.ButtonGroup;import javax.swing.JLabel;import javax.swing.JPanel;import javax.swing.JRadioButton;import javax.swing.JSpinner;import javax.swing.SpinnerNumberModel;import javax.swing.border.TitledBorder;import neuralnetworktoolkit.methods.TrainingParameters;import neuralnetworktoolkit.methods.gradientbased.backpropagation.BackPropagationModel;import neuralnetworktoolkit.methods.gradientbased.backpropagation.BackPropagationParameters;import neuralnetworktoolkit.methods.gradientbased.quasinewton.gaussnewton.GaussNewtonParameters;/** * * * @version $Revision: 1.2 $ - $Date: 2005/02/24 21:20:29 $ * * @author <a href="mailto:rodbra@pop.com.br">Rodrigo C. M. Coimbra</a> * @author <a href="mailto:hugoiver@yahoo.com.br">Hugo Iver V. Gonçalves</a> */public class BackPropagationPanel extends TrainingMethodPanel { private JLabel maxEpochsLabel; private JLabel errorLabel; private JLabel learningRateLabel; private JLabel alphaLabel; private JRadioButton batchRadio; private JRadioButton batchAdaptiveLearningRateRadio; private JRadioButton batchMomentumRadio; private JRadioButton onLineRadio; private JRadioButton onLineAdaptiveLearningRadio; private JRadioButton onLineMomentumRadio; private ButtonGroup backPropagationVariationGroup; private JSpinner maxEpochsSpinner; private JSpinner errorSpinner; private JSpinner learningRateSpinner; private JSpinner alphaSpinner; private SpinnerNumberModel maxEpochsSpinnerModel; private SpinnerNumberModel errorSpinnerModel; private SpinnerNumberModel learningRateSpinnerModel; private SpinnerNumberModel alphaSpinnerModel; private JPanel maxEpochsPanel; private JPanel errorPanel; private JPanel learningRatePanel; private JPanel alphaPanel; private JPanel backPropagationVariationPanel; private JPanel stopConditionPanel; private JPanel backPropagationParametersPanel; private Insets borderInsets; private Insets borderInsets2; private String[] methods = {"gradientbased.backpropagation.BatchBackPropagation", "gradientbased.backpropagation.BatchAdaptiveLearningRateBackPropagation", "gradientbased.backpropagation.BatchMomentumBackPropagation", "gradientbased.backpropagation.OnLineBackPropagation", "gradientbased.backpropagation.OnLineAdaptiveLearningRateBackPropagation", "gradientbased.backpropagation.OnLineMomentumBackPropagation"}; private ResourceBundle resource; /** * * */ public BackPropagationPanel() { resource = ResourceBundle .getBundle("neuralnetworktoolkit.gui.options.method.resources.BackPropagationPanelResource"); borderInsets = new Insets(5, 5, 5, 5); borderInsets2 = new Insets(2, 2, 2, 2); batchRadio = new JRadioButton(resource.getString("batch")); batchAdaptiveLearningRateRadio = new JRadioButton(resource.getString("batchAdaptiveLearningRate")); batchMomentumRadio = new JRadioButton(resource.getString("batchMomentum")); onLineRadio = new JRadioButton(resource.getString("onLine")); onLineAdaptiveLearningRadio = new JRadioButton(resource.getString("onLineAdaptiveLearningRate")); onLineMomentumRadio = new JRadioButton(resource.getString("onLineMomentum")); backPropagationVariationGroup = new ButtonGroup(); backPropagationVariationGroup.add(batchRadio); backPropagationVariationGroup.add(batchAdaptiveLearningRateRadio); backPropagationVariationGroup.add(batchMomentumRadio); backPropagationVariationGroup.add(onLineRadio); backPropagationVariationGroup.add(onLineAdaptiveLearningRadio); backPropagationVariationGroup.add(onLineMomentumRadio); backPropagationVariationGroup.setSelected(batchRadio.getModel(), true); backPropagationVariationPanel = new JPanel(); backPropagationVariationPanel.setLayout(new GridBagLayout()); backPropagationVariationPanel.add(batchRadio, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.add(batchAdaptiveLearningRateRadio, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.add(batchMomentumRadio, new GridBagConstraints(0, 2, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.add(onLineRadio, new GridBagConstraints(1, 0, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.add(onLineAdaptiveLearningRadio, new GridBagConstraints(1, 1, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.add(onLineMomentumRadio, new GridBagConstraints(1, 2, 1, 1, 1.0, 1.0, GridBagConstraints.WEST, GridBagConstraints.VERTICAL, borderInsets2, 0, 0)); backPropagationVariationPanel.setBorder(new TitledBorder(resource.getString("backPropagationVariation"))); maxEpochsLabel = new JLabel(resource.getString("maxEpochs")); maxEpochsSpinnerModel = new SpinnerNumberModel(400, 1, BackPropagationModel.MAX_EPOCHS, 1); maxEpochsSpinner = new JSpinner(maxEpochsSpinnerModel); maxEpochsPanel = new JPanel(); maxEpochsPanel.setLayout(new BorderLayout()); maxEpochsPanel.add(maxEpochsLabel, BorderLayout.NORTH); maxEpochsPanel.add(maxEpochsSpinner, BorderLayout.CENTER); errorLabel = new JLabel(resource.getString("error")); errorSpinnerModel = new SpinnerNumberModel(0.001, 0, 1, 0.001); errorSpinner = new JSpinner(errorSpinnerModel); errorPanel = new JPanel(); errorPanel.setLayout(new BorderLayout()); errorPanel.add(errorLabel, BorderLayout.NORTH); errorPanel.add(errorSpinner, BorderLayout.CENTER); stopConditionPanel = new JPanel(); stopConditionPanel.setLayout(new GridBagLayout()); stopConditionPanel.add(maxEpochsPanel, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.VERTICAL, borderInsets, 67, 0)); stopConditionPanel.add(errorPanel, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.VERTICAL, borderInsets, 67, 0)); stopConditionPanel.setBorder(new TitledBorder(resource.getString("stopCondition"))); learningRateLabel = new JLabel(resource.getString("learningRate")); learningRateSpinnerModel = new SpinnerNumberModel(0.3, 1e-30, 1, 0.001); learningRateSpinner = new JSpinner(learningRateSpinnerModel); learningRatePanel = new JPanel(); learningRatePanel.setLayout(new BorderLayout()); learningRatePanel.add(learningRateLabel, BorderLayout.NORTH); learningRatePanel.add(learningRateSpinner, BorderLayout.CENTER); alphaLabel = new JLabel(resource.getString("alpha")); alphaSpinnerModel = new SpinnerNumberModel(0.2, 1e-30, 1, 0.001); alphaSpinner = new JSpinner(alphaSpinnerModel); alphaPanel = new JPanel(); alphaPanel.setLayout(new BorderLayout()); alphaPanel.add(alphaLabel, BorderLayout.NORTH); alphaPanel.add(alphaSpinner, BorderLayout.CENTER); backPropagationParametersPanel = new JPanel(); backPropagationParametersPanel.setLayout(new GridBagLayout()); backPropagationParametersPanel.add(learningRatePanel, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.VERTICAL, borderInsets, 67, 0)); backPropagationParametersPanel.add(alphaPanel, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.VERTICAL, borderInsets, 67, 0)); backPropagationParametersPanel.setBorder(new TitledBorder(resource.getString("backPropagationParameters"))); this.setLayout(new GridBagLayout()); this.add(backPropagationVariationPanel, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL, borderInsets, 67, 0)); this.add(stopConditionPanel, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL, borderInsets, 67, 0)); this.add(backPropagationParametersPanel, new GridBagConstraints(0, 2, 1, 1, 1.0, 1.0, GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL, borderInsets, 67, 0)); } //GaussNewtonPanel() /* * @see neuralnetworktoolkit.gui.options.method.TrainingMethodPanel#initializeComponents(boolean) */ public void initializeComponents(boolean verify) { BackPropagationParameters bpParameters; if(verify) { bpParameters = (BackPropagationParameters) parameters; /* "gradientbased.backpropagation.BatchBackPropagation", "gradientbased.backpropagation.BatchAdaptiveLearningRateBackPropagation", "gradientbased.backpropagation.BatchMomentumBackPropagation", "gradientbased.backpropagation.OnLineBackPropagation", "gradientbased.backpropagation.OnLineAdaptiveLearningRateBackPropagation", "gradientbased.backpropagation.OnLineMomentumBackPropagation" */ if(bpParameters.getMethod().equals(methods[0])) { } else if(bpParameters.getMethod().equals(methods[1])) { } else if(bpParameters.getMethod().equals(methods[2])) { } else if(bpParameters.getMethod().equals(methods[3])) { } else if(bpParameters.getMethod().equals(methods[4])) { } else if(bpParameters.getMethod().equals(methods[5])) { } errorSpinner.setValue(new Double(bpParameters.getError())); maxEpochsSpinner.setValue(new Integer(bpParameters.getMaxEpochs())); learningRateSpinner.setValue(new Double(bpParameters.getLearningRate())); alphaSpinner.setValue(new Double(bpParameters.getAlpha())); } } //initializeComponents() /** * @return Returns the parameters. */ public TrainingParameters getParameters() { BackPropagationParameters bpParameters; bpParameters = (BackPropagationParameters) parameters; bpParameters.setError(((Double)errorSpinner.getValue()).doubleValue()); bpParameters.setMaxEpochs(((Integer)maxEpochsSpinner.getValue()).intValue()); bpParameters.setLearningRate(((Double)learningRateSpinner.getValue()).doubleValue()); bpParameters.setAlpha(((Double)alphaSpinner.getValue()).doubleValue()); return bpParameters; } //getParameters()} //BackPropagationPanel
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -