📄 datatester.java
字号:
package neuralnetworktoolkit.tests;import javax.swing.*;import neuralnetworktoolkit.datamanager.textfilemanager.LoadFromFile;import neuralnetworktoolkit.math.NeuralMath;import neuralnetworktoolkit.methods.gradientbased.quasinewton.lm.LevenbergMarquardt;import neuralnetworktoolkit.modelstorage.ModelSerializer;import neuralnetworktoolkit.neuralnetwork.NeuralNetwork;public class DataTester { public static void main(String[] args) { JTextArea textArea; JFrame frame = new JFrame(); double inicio =0 , fim = 0; NeuralNetwork nn; LevenbergMarquardt lm = new LevenbergMarquardt(); LoadFromFile inputData; textArea = new JTextArea(500, 500); textArea.setEditable(false); JScrollPane scrollPane = new JScrollPane(textArea, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS); frame.setContentPane(scrollPane); frame.setSize(500,500); frame.show(); textArea.append("Gera��o de rede neural para Theta R inicializada!!!\n"); /* try { String fileName = "teste.txt"; inputData = new LoadFromFile(fileName,","); String[] funcoes = {"Tanh","Sigmoid","Xcube" }; nn = new NeuralNetwork(2, 1, 1, 1, NeuralNetwork.NEURON_NORMALIZER, funcoes); textArea.append("Rede Criada!!!\n"); int[] parameters = { 1, 1000 }; inicio = System.currentTimeMillis(); textArea.append("Treinando a rede! Aguarde...\n"); lm.train(nn, .00007,inputData.getInputData(), inputData.getExpectedOutput(), parameters); fim = System.currentTimeMillis(); textArea.append("Rede Treinada!!!\n"); TestModel test = new TestModel(); test.testModel(nn, "Atributos&ThetaRTS.txt", 0, 0.03); //ModelSerializer.serializeModelToFile(nn, "DemoEmbrapaAtributos&ThetaRTR"); } catch(Exception e) { e.printStackTrace(); textArea.append(e.getMessage()+"\n"); }*/ textArea.append("Tempo de treinamento: " + ((fim - inicio) / 1000) + "\n"); System.out.println(); textArea.append("Final da demonstra��o!\n"); } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -