⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dbtest.java

📁 利用Java实现的神经网络工具箱
💻 JAVA
字号:
/* * NetworkController.java	1.0  30/10/2004 * * NeuralNetworkToolkit * Copyright (C) 2004 Universidade de Brasília * * This file is part of NeuralNetworkToolkit. * * NeuralNetworkToolkit is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * NeuralNetworkToolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with NeuralNetworkToolkit; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 - USA. */ package neuralnetworktoolkit.tests;import neuralnetworktoolkit.NetworkController;import neuralnetworktoolkit.NetworkControllerException;import neuralnetworktoolkit.NeuralModel;import neuralnetworktoolkit.StatisticalResults;import neuralnetworktoolkit.datamanager.databasemanager.DbaseManager;import neuralnetworktoolkit.datamanager.textfilemanager.LoadFromFileManager;import neuralnetworktoolkit.math.NeuralMath;import neuralnetworktoolkit.methods.gradientbased.quasinewton.lm.*;import neuralnetworktoolkit.validation.ValidationStatistics;/** * @author iver * * TODO To change the template for this generated type comment go to * Window - Preferences - Java - Code Generation - Code and Comments */public class DBTest {		public static void main(String[] args) {				LoadFromFileManager lf = new LoadFromFileManager();		DbaseManager db = new DbaseManager("postgresql");		//db.setDriverName("org.postgresql.Driver");		db.connectDatabase("jdbc:postgresql://localhost/Iver","iver","x");		//db.setDriverName("com.mysql.jdbc.Driver");		//db.connectDatabase("jdbc:mysql://localhost/teste");				String[] tables = db.getTableNames();		String[] columns = null;				System.out.println("Tabelas Existentes:");		for (int i = 0; i < tables.length; i++) {			System.out.println("Nome da Tabela: " + tables[i]);			columns = db.getTableColumnNames(tables[i]);			for (int j = 0; j < columns.length; j++) {				System.out.println("Nome da Coluna: " + columns[j]);			}			System.out.println();		}		String[] trC = {"a","b"}; 		double[][] data = db.loadData("teste", trC);		NeuralMath.printMatrix(data);								StatisticalResults statistics;		ValidationStatistics validationStatistics;				System.out.println("Teste iniciado!");				NetworkController nc = new NetworkController();				try {									int[] parameters = {1, 10, 1};						String[] functions = {"Tanh", "Tanh"};						String initialization = "NguyenWidrow";			nc.createNeuralNetwork(parameters, initialization, functions);						nc.setNormalization("Linear", NetworkController.FULLNORMALIZER);									int[] index = {1};			nc.setOutputIndex(index);									nc.setTrainingData(data);			nc.splitDataValues();						nc.setTrainingMethod("gradientbased.quasinewton.lm.OLMAM");									LevenbergMarquardtParameters trainParam = new LevenbergMarquardtParameters();						trainParam.setError(.000000000000000000000000005);			trainParam.setLmKind(LevenbergMarquardtModel.INCOMPLETE_LM);			trainParam.setMaxIterations(10);									statistics = nc.trainNeuralNetwork(trainParam);						System.out.println("Número de épocas: " + statistics.getNumberOfEpochs());			System.out.println("Número de iterações: " + statistics.getNumberIterations());			System.out.println("Erro do treinamento: " + statistics.getError());			System.out.println("Tempo de treinamento: " + statistics.getTrainingTime());						String[] inC = {"c"};			double[][] tdata = db.loadData("teste", inC);			System.out.println("-----> Inferencia <-----");			nc.setInferenceData(tdata);			nc.infereWithNetwork();			System.out.println("-----> Inferencia <-----");						db.saveNeuralModel("blo","hugo", nc.getNeuralModel());					} catch (NetworkControllerException e) {			e.printStackTrace();		}				System.out.println("Teste finalizado!");								String[][] existentModels;		existentModels = db.getExistitentModels("blo", "hugo",.0005,null);				if (existentModels != null) {			System.out.println("Modelos existentes:");			for (int i = 0; i < existentModels.length; i++) {				for (int j = 0; j < existentModels[0].length; j++) {					System.out.print(existentModels[i][j] + " ");				}				System.out.println();			}		}				String[] chave = {"hugo","2004-11-14", "02:04:45"};				NetworkController retrievedNN = new NetworkController();		try {						NeuralModel nm = db.retrieveModel("blo", chave);			if (nm != null ) {				System.out.println("Recuperei nao é nulo");				retrievedNN.createNeuralNetwork(nm);				String[] inC = {"c"};				double[][] tdata = db.loadData("teste", inC);				retrievedNN.setInferenceData(tdata);				System.out.println("-----> Inferencia <-----");				retrievedNN.infereWithNetwork();				System.out.println("-----> Inferencia <-----");			}					} catch (NetworkControllerException e1) {			e1.printStackTrace();		}				db.disconnectDatabase();			} // main()	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -