📄 test.java
字号:
/* * Created on 12/10/2004 * * TODO To change the template for this generated file go to * Window - Preferences - Java - Code Generation - Code and Comments */package neuralnetworktoolkit.tests;import neuralnetworktoolkit.*;import neuralnetworktoolkit.datamanager.DataLoaderException;import neuralnetworktoolkit.datamanager.textfilemanager.LoadFromFileManager;import neuralnetworktoolkit.methods.gradientbased.backpropagation.*;import neuralnetworktoolkit.methods.gradientbased.quasinewton.lm.*;import neuralnetworktoolkit.validation.ValidationStatistics;/** * @author iver * * TODO To change the template for this generated type comment go to * Window - Preferences - Java - Code Generation - Code and Comments */public class Test { public static void main(String[] args) { StatisticalResults statistics; ValidationStatistics validationStatistics; LoadFromFileManager lf = new LoadFromFileManager(); System.out.println("Teste iniciado!"); NetworkController nc = new NetworkController(); try { int[] parameters = {4, 10, 1}; String[] functions = {"Tanh", "Tanh"}; String initialization = "NguyenWidrow"; nc.createNeuralNetwork(parameters, initialization, functions); nc.setNormalization("Linear", NetworkController.FULLNORMALIZER); //nc.setNormalization("ZeroMeanAndUnitStandardDeviation", NetworkController.FULLNORMALIZER); double[][] data = null; try { //data = lf.loadData("/home/iver/workspace/NeuralNetworkToolkit/teste.txt", ","); data = lf.loadData("/home/rodrigo/a.txt", "^"); nc.setTrainingData(data); } catch (DataLoaderException e2) { e2.printStackTrace(); } int[] index = {0}; nc.setOutputIndex(index); //nc.splitDataValues(); //nc.setTrainingMethod("gradientbased.quasinewton.lm.LevenbergMarquardt"); //nc.setTrainingMethod("gradientbased.quasinewton.lm.LMAM"); nc.setTrainingMethod("gradientbased.quasinewton.lm.OLMAM"); //nc.setTrainingMethod("gradientbased.quasinewton.gaussnewton.GaussNewton"); //nc.setTrainingMethod("gradientbased.backpropagation.OnLineBackPropagation"); //nc.setTrainingMethod("gradientbased.backpropagation.BatchAdaptiveLearningRateMomentumBackPropagation"); //nc.setTrainingMethod("gradientbased.backpropagation.OnLineMomentumBackPropagation"); LevenbergMarquardtParameters trainParam = new LevenbergMarquardtParameters(); //LMAMParameters trainParam = new LMAMParameters(); //trainParam.setDeltaP(.5); //trainParam.setEpsilon(.03); //BackPropagationParameters trainParam = new BackPropagationParameters(); trainParam.setError(.000000000000000000000000005); trainParam.setLmKind(LevenbergMarquardtModel.INCOMPLETE_LM); trainParam.setMaxIterations(200); //trainParam.setLearningRate(5); //trainParam.setMaxEpochs(3000); //trainParam.setAlpha(1.1); statistics = nc.trainNeuralNetwork(trainParam); //System.out.println("N??mero de ??pocas: " + statistics.getNumberOfEpochs()); System.out.println("N??mero de itera????es: " + statistics.getNumberIterations()); System.out.println("Erro do treinamento: " + statistics.getError()); System.out.println("Tempo de treinamento: " + statistics.getTrainingTime()); /* try { //data = lf.loadData("/home/iver/workspace/NeuralNetworkToolkit/iteste.txt", ","); data = lf.loadData("c:\\a.txt", ","); } catch (DataLoaderException e1) { e1.printStackTrace(); } nc.setValidationData(data); nc.splitDataValues(); nc.validateNetwork(); */ try { //data = lf.loadData("/home/iver/workspace/NeuralNetworkToolkit/jteste.txt", ","); data = lf.loadData("/home/rodrigo/a.txt", "^"); } catch (DataLoaderException e3) { e3.printStackTrace(); } nc.setInferenceData(data); nc.splitDataValues(); nc.infereWithNetwork(); //validationStatistics = nc.validateNetwork("CrossValidation", trainParam); //System.out.println("Erro valida????o: " + validationStatistics.getTotalError()); } catch (NetworkControllerException e) { e.printStackTrace(); } System.out.println("Teste finalizado!"); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -