📄 gps_kalman_zsy.m
字号:
%%%%% gps kalman zishiying %%%%%
clear;
%------------- 参数定义 -----------%
pi=3.1415926;
C=3.0e8; %光速
a=26609e3; %轨道长半轴长,单位已经换算为 m
e=0.006; %轨道的偏心率
i_0=55*pi/180; %基准时间t_0的轨道倾角
a_e=6378137; %地球椭球的长半径
f_e=1/298.257223563; %地球椭球体扁率
e_2=2*f_e-f_e^2; %GPS参考椭球第一偏心率的平方
E0=10; %定义的仰角比较值
mu=3.986008e14; %开普勒常数,单位为m3/s2
w_ie=7.292115147e-5; %地球自转平均角速率,单位rad/s
% 卫星轨道参数矩阵epoch:2007-04-01 14:21:46,第一列卫星标号1~30,第二列升交点赤经W_0,第三列平近点角距M_0 %
sate=[1 12.4664 313.6181;2 13.2561 99.1277;3 10.4480 41.9519;4 12.4727 289.5653;5 11.6077 116.5486;6 10.5432 209.4507;
7 65.1275 73.1881;8 66.9823 101.9770;9 68.3454 286.8979;10 73.1479 200.4810;11 70.2154 77.1527;
12 125.5712 295.1060;13 128.3618 285.5386;14 131.8240 123.7737;15 131.3074 44.5724;16 130.3997 73.6977;
17 186.9655 97.3078;18 188.4401 98.7626;19 184.9619 319.1793;20 194.1995 55.7345;21 190.8460 172.0155;
22 253.5063 46.1491;23 251.3094 346.3001;24 241.0610 333.6671;25 252.3879 163.3319;26 250.2394 231.0366;
27 311.8862 334.8484;28 309.8682 287.5291;29 312.8828 146.8152;30 313.3067 94.0084];
t_0=0; %星历的参考历元
a3=a^3;
n=sqrt(mu/a3) % n=(2*pi)/T=sqrt(mu/a3),应用了开普勒第三定律
k=1;
i=1;
A_i=1;
r=1;
T=1;
%
t_u=0;
t_uu0=500; % 用户运行起始时间
%---------------------- 初始位置 ---------------%
%----------------------------------------------------------------------------------------%
fid = fopen('E:\work\program\trace\trace1.dat','r');
while 1
linestring = fgets(fid);
if linestring < 0
break;
end
place=sscanf(linestring,'%*f%f%f%f%*[^\n]');
gps_longi=place(1);
gps_lati=place(2);
gps_height=place(3);
t_u = t_u+1 % 实时显示用户运行时间
user(1,t_u)=gps_longi;%用户经纬高信息
user(2,t_u)=gps_lati;
user(3,t_u)=gps_height;
% 用户在大地坐标系中的经纬度数据,经度L,纬度B,高度H %
user1(1,t_u)=user(1,t_u)*pi/180;%完成弧度转换
user1(2,t_u)=user(2,t_u)*pi/180;
L=user1(1,t_u);
B=user1(2,t_u);
H=user(3,t_u);
% 计算椭球的卯酉圈曲率半径N
W=sqrt(1-e_2*sin(B)^2);
N=a_e/W;
% 将用户在大地坐标系下的坐标转换为地球坐标系的空间直角坐标[xp,yp,zp]
xp(1,t_u)=(N+H)*cos(B)*cos(L);
yp(1,t_u)=(N+H)*cos(B)*sin(L);
zp(1,t_u)=(N*(1-e_2)+H)*sin(B);
% 求系数阵h
h(1,1)=-sin(B)*cos(L);h(1,2)=-sin(B)*sin(L);h(1,3)=cos(B);
h(2,1)=-sin(L); h(2,2)=cos(L); h(2,3)=0;
h(3,1)=cos(B)*cos(L); h(3,2)=cos(B)*sin(L); h(3,3)=sin(B);
t_k=t_uu0+t_u; % 找到对应于用户运行的时刻的卫星所在的位置,用户打第t_u个点时,时间为t_uu0+t_u
q=t_k; % 各个矩阵的行数表示量
t(t_u)=t_u;
j=1; % 卫星标号
sum_s(t_u,1)=0; % 求 q 时刻的卫星数目矩阵
while j<=30 %各个矩阵的列数表示量
M_k(q,j)=sate(j,3)+n*(t_k-t_0);
Et_1(q,j)=M_k(q,j);
t_end=1;
while(t_end)
Et(q,j)=M_k(q,j)+e*sin(Et_1(q,j));
delta_E(q,j)=Et(q,j)-Et_1(q,j);
Et_1(q,j)=Et(q,j);
if abs(delta_E(q,j))<=1.0e-6
E_k(q,j)=Et(q,j);
t_end=0;
end
end
%-------------- 求真近点角 f 的值,并进行象限判断 -----------%
A=cos(E_k(q,j))-e; %分母一定是是大于0的数,所以只取分子来做判断
B=sqrt(1-e^2)*sin(E_k(q,j));
if (A==0)
f(q,j)=pi/2;
elseif (B==0)
f(q,j)=pi;
else
f(q,j)=atan(abs(B/A));
if ((B>0)&(A<0))
f(q,j)=pi-f(q,j);
elseif ((B<0)&(A<0))
f(q,j)=pi+f(q,j);
elseif ((B<0)&(A>0))
f(q,j)=2*pi-f(q,j);
end
end
u_k(q,j)=f(q,j);
r_k(q,j)=a*(1-e*cos(E_k(q,j)));
i_k(q,j)=i_0;
L_k(q,j)=sate(j,2)-w_ie*(t_k);
x_k(q,j)=r_k(q,j)*cos(u_k(q,j))*cos(L_k(q,j))-r_k(q,j)*sin(u_k(q,j))*sin(L_k(q,j))*cos(i_k(q,j));
y_k(q,j)=r_k(q,j)*cos(u_k(q,j))*sin(L_k(q,j))+r_k(q,j)*sin(u_k(q,j))*cos(L_k(q,j))*cos(i_k(q,j));
z_k(q,j)=r_k(q,j)*sin(u_k(q,j))*sin(i_k(q,j));
%---计算仰角 E=arctan(Z/sqrt(X^2+Y^2)) ,E_rad单位rad ,E_deg单位度 -----%
delta_x(q,j)=x_k(q,j)-xp(1,t_u);
delta_y(q,j)=y_k(q,j)-yp(1,t_u);
delta_z(q,j)=z_k(q,j)-zp(1,t_u);
%求卫星在 % 站心坐标系下 % 的坐标
X_sta(q,j)=h(1,1)*delta_x(q,j)+h(1,2)*delta_y(q,j)+h(1,3)*delta_z(q,j);
Y_sta(q,j)=h(2,1)*delta_x(q,j)+h(2,2)*delta_y(q,j)+h(2,3)*delta_z(q,j);
Z_sta(q,j)=h(3,1)*delta_x(q,j)+h(3,2)*delta_y(q,j)+h(3,3)*delta_z(q,j);
%---------------------给出对应各颗卫星的星历误差---------------------%
%d_star(j)=0;
%d_star(j)=50+randn(1);
d_star(j)=5*randn(1);
%--------------------------------------------------------------------%
E_deno(q,j)=X_sta(q,j)^2+Y_sta(q,j)^2;
E_deno(q,j)=sqrt(E_deno(q,j));
if E_deno(q,j)==0
E_rad(q,j)=pi/2;
E_deg(q,j)=90;
else
E_rad(q,j)=atan(Z_sta(q,j)/E_deno(q,j));
E_deg(q,j)=E_rad(q,j)*180/pi;
end
%-- 开始高度角比较 ,E0 为给定的高度角,判断可见星 --%
ele(q,j)=E_deg(q,j);
if ele(q,j)>=E0
ele(q,j)=1;
if r~=q
i=1;
r=q;
end
s_n(q,i)=j; % j :可见星标号
%-----------%
if s_n(q,i)~=0 % 将可见星提取出来
sd(i)=s_n(q,i);% sd ;可见星标号阵
% -地心坐标系下站星的几何距离 R - %
R=(x_k(q,sd(i))-xp(1,t_u))^2 + (y_k(q,sd(i))-yp(1,t_u))^2 + (z_k(q,sd(i))-zp(1,t_u))^2;
R=sqrt(R);
%------------------------------以下要产生伪距rou------------------------------%
%d_T(t_u)=0;
%d_T(t_u)=100000+randn(1);%-仿真给出接收机在各个时刻的钟差,即折合的距离误差-%
d_T(t_u)=5*randn(1);
%---------------------------------------%
rou(q,i)=R+d_T(t_u)+d_star(sd(i)); % 带误差的伪距
%---------------------------------------------------------------------------%
end
%-----------%
i=i+1;
else
ele(q,j)=0;
end
sum_s(t_u,1)=sum_s(t_u,1)+ele(q,j);
j=j+1;
end
end
end
%
disp('=================以下开始定位计算,利用递推法=======================');
%-------用户总的运行时间
t_user=t_u;
%*--------------------------matrix defined ------------------------*/
P =diag([25000,25000,25000,1000,1000,1000,0,0,0,90000,900]);
%P =diag([25000,25000,25000,4,4,4,4500000000000,150000000]);
h0=9.4*1e-20; h_1=1.8*1e-19; h_2=3.8*1e-21;
Qt11 = h0*T/2+2*h_1*T^2+2*pi^2*h_2*T^3/3; Qt12 = 2*h_1*T+pi^2*h_2*T^3; Qt22 = h0/(2*T)+2*h_1+8*pi^2*h_2*T/3;
X_kk =[-2.6061e+006,4.7375e+006,3.3831e+006, 2, 2, 2,1,1,1, 0, 0]';
% set the A ,F ,G,H matrix
A1=zeros(9,9) ;A1(1,4)=1 ; A1(2,5)=1 ;A1(3,6)=1 ; A1(4,7)=1 ;A1(5,8)=1 ; A1(6,9)=1 ; A1(7,7)=-1 ;A1(8,8)=-1 ; A1(9,9)=-1 ;
A([1:9],[1:9])=A1;
A([10:11],[10:11])=[0,1; 0,0];
F([1:9],[1:9])=eye(9)+A1+A1*A1/2;
F([10:11],[10:11])=[1,T; 0,1];
Q([1:9],[1:9])=diag([0,0,0,0,0,0,4,4,4]);
Q ([10:11],[10:11])=[ Qt11, Qt12;
Qt12, Qt22];
%Tao=zeros(11,5); Tao(4,7)=1 ; Tao(5,8)=1 ; Tao(6,9)=1 ; Tao(10,10)=1 ; Tao(11,11)=1 ;
%G=(eye(11)+A/2+A*A/6)*Tao;
%----------------------------------------------------------------------------------------%
for t_u=1:t_user %用户运行的总点数
Xkk_1=F*X_kk; % kalman equation
% get_Q_kk( ); %// get robust Q_kk value
Nd_tmp(1,1) = T*T*T*T*T/20.0; Nd_tmp(1,2) = T*T*T*T/8.0; Nd_tmp(1,3) = T*T*T/6.0;
Nd_tmp(2,1) = Nd_tmp(1,2); Nd_tmp(2,2) = T*T*T/3.0; Nd_tmp(2,3) = T*T/2.0;
Nd_tmp(3,1) = Nd_tmp(1,3); Nd_tmp(3,2) = Nd_tmp(2,3); Nd_tmp(3,3) = T;
if X_kk(7,1) >= 0.0
qax= (4.0-pi)/pi*(20.0-X_kk(7,1))*(20.0-X_kk(7,1));
else
qax= (4.0-pi)/pi*(20.0+X_kk(7,1))*(20.0+X_kk(7,1));
end
if X_kk(8,1) >= 0.0
qay= (4.0-pi)/pi*(20.0-X_kk(8,1))*(20.0-X_kk(8,1));
else
qay= (4.0-pi)/pi*(20.0+X_kk(8,1))*(20.0+X_kk(8,1));
end
if X_kk(9,1) >= 0.0
qaz= (4.0-pi)/pi*(20.0-X_kk(9,1))*(20.0-X_kk(9,1));
else
qaz= (4.0-pi)/pi*(20.0+X_kk(9,1))*(20.0+X_kk(9,1));
end
for kc1=1:3
for kc2=1:3
Q(kc1,kc2) = 2.0* qax*Nd_tmp(kc1,kc2);
Q(kc1+3,kc2+3) = 2.0* qay*Nd_tmp(kc1,kc2);
Q(kc1+6,kc2+6) = 2.0* qaz*Nd_tmp(kc1,kc2);
end
end
Q ([10:11],[10:11])=[ Qt11, Qt12;
Qt12, Qt22];
%end get_Q_kk()
q=t_uu0+t_u;
kk=sum_s(t_u,1);%可见星个数
for i=1:kk
sd(i)=s_n(q,i);% sd ;可见星标号阵
% -地心坐标系下站星的几何距离 R - %
R=sqrt((x_k(q,sd(i))-Xkk_1(1,1))^2 + (y_k(q,sd(i))-Xkk_1(2,1))^2 + (z_k(q,sd(i))-Xkk_1(3,1))^2);
%-----求解用户位置变化量 ---%
% 求A,V=AX+L %
a_11=(x_k(q,sd(i))-Xkk_1(1,1))/R; a_12=(y_k(q,sd(i))-Xkk_1(2,1))/R;
a_13=(z_k(q,sd(i))-Xkk_1(3,1))/R; a_14=1;
H(i,[1:11])=[-a_11,-a_12,-a_13,0,0,0,0,0,0,a_14,0];
Measure_kk(i,1) = rou(q,i)-R-Xkk_1(10,1);
R_k(i,i)=100;
end
% do_kalman( );
%Pkk_1 = F*P*F' +G*Q*G'; % kalman equation
Pkk_1 = F*P*F' +Q;
K = Pkk_1* H'*inv(H*Pkk_1*H'+R_k); %
X_kk = Xkk_1 +K*Measure_kk; %
P =( eye(11)- K*H )*Pkk_1; % kalman equation
% end do_kalman()
GPS_Result(t_u,1)=X_kk(1,1);
GPS_Result(t_u,2)=X_kk(2,1);
GPS_Result(t_u,3)=X_kk(3,1);
%
covP(1,t_u)=sqrt(P(1,1));covP(2,t_u)=sqrt(P(2,2));covP(3,t_u)=sqrt(P(3,3));covP(4,t_u)=sqrt(P(4,4));
covP(5,t_u)=sqrt(P(5,5));covP(6,t_u)=sqrt(P(6,6));covP(7,t_u)=sqrt(P(7,7));covP(8,t_u)=sqrt(P(8,8));
%-----对比定位前后的坐标,做差----%
delta1_p_end(1,t_u)=abs(xp(1,t_u)-X_kk(1,1));
delta2_p_end(1,t_u)=abs(yp(1,t_u)-X_kk(2,1));
delta3_p_end(1,t_u)=abs(zp(1,t_u)-X_kk(3,1));
delta_p_end(1,t_u)=sqrt(delta1_p_end(1,t_u)^2+delta2_p_end(1,t_u)^2+delta3_p_end(1,t_u)^2);
end
%求位置误差的平均值
mm1=mean(delta1_p_end(1,:));
mm2=mean(delta2_p_end(1,:));
mm3=mean(delta3_p_end(1,:));
mm=mean(delta_p_end(1,:));
%-----------------------------------各个时刻递推完毕-------------------------------------%
disp('============Now ready to plot==============');
fh_trace=figure('Name','Flight Trace Kalman ZSY','NumberTitle','off');
plot3(xp(1,:),yp(1,:),zp(1,:),'r',GPS_Result(:,1),GPS_Result(:,2),GPS_Result(:,3),'b');
title('定位跟踪仿真');
xlabel('经度(米)');ylabel('纬度(米)');zlabel('高度(米)');
grid;
fh_error1=figure('Name','Position Error1 Kalman ZSY','NumberTitle','off');
subplot(3,1,1);plot(t,delta1_p_end(1,:),'b',t,mm1,'r.');title('X、Y、Z方向位置误差仿真');ylabel('X方向误差值(m)');grid;
subplot(3,1,2);plot(t,delta2_p_end(1,:),'b',t,mm2,'r.');ylabel('Y方向误差值(m)');grid;
subplot(3,1,3);plot(t,delta3_p_end(1,:),'b',t,mm3,'r.');xlabel('t(sec)');ylabel('Z方向误差值(m)');grid;
fh_error2=figure('Name','Position Error2 Kalman ZSY','NumberTitle','off');
plot(t,delta_p_end(1,:),'b',t,mm,'r.');
title('位置误差仿真');
xlabel('t(sec)');ylabel('误差值(m)');
grid;
fh_covP=figure('Name','covP Kalman ZSY','NumberTitle','off');
plot(t,covP(1,:),'b',t,covP(2,:),'r',t,covP(3,:),'y',t,covP(4,:),'m',...
t,covP(5,:),'c',t,covP(6,:),'g',t,covP(7,:),'k',t,covP(8,:),'m.');
title('均方差仿真');
xlabel('t(sec)');ylabel('均方差值(m)');
grid;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -