📄 blackscholes.m
字号:
view(-30,80);rotate3d on;a=get(gca);set(gca,'ygrid','off');figure(5)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0.1:1e-2:0.25];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(\sigma_t|S_t,t_m,C_t,P_t)','fontsize',15)%v=[0 1];%caxis(v);for t=11:20:200, [range,domain]=hist(xparticle_pf(2,t,:),thex); waterfall(domain,t,range/sum(range));end;view(-30,80);rotate3d on;a=get(gca);set(gca,'ygrid','off');%%%%%%%%%%%%%%% PERFORM SEQUENTIAL MONTE CARLO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ======== EKF proposal ======== %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfekf = ones(2,T,N); % These are the particles for the estimate % of x. Note that there's no need to store % them for all t. We're only doing this to % show you all the nice plots at the end.Pparticle_pfekf = cell(N,1); % Particles for the covariance of x.% Initialisation:for i=1:N, xparticle_pfekf(1,1,i) = initr; % sqrt(initr)*randn(1,1); xparticle_pfekf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1); Pparticle_pfekf{i} = ones(2,2,T); for t=1:T, Pparticle_pfekf{i}(:,:,t)= diag([P01 P02]); end;end; xparticlePred_pfekf = ones(2,T,N); % One-step-ahead predicted values of the states.PparticlePred_pfekf = Pparticle_pfekf; % One-step-ahead predicted values of P.yPred_pfekf = ones(2,T,N); % One-step-ahead predicted values of y.w = ones(T,N); % Importance weights.muPred_pfekf = ones(2,T); % EKF O-s-a estimate of the mean of the states.PPred_pfekf = ones(2,2); % EKF O-s-a estimate of the variance of the states.mu_pfekf = ones(2,T,N); % EKF estimate of the mean of the states.P_pfekf = ones(2,2,T); % EKF estimate of the variance of the states.disp(' ');tic; % Initialize timer for benchmarkingfor t=2:T, fprintf('PF-EKF : t = %i / %i \r',t,T); fprintf('\n') % PREDICTION STEP: % ================ % We use the EKF as proposal. for i=1:N, muPred_pfekf(:,t) = feval('bsffun',xparticle_pfekf(:,t-1,i),t); Jx = eye(2); % Jacobian for ffun. PPred_pfekf = Q_pfekf + Jx*Pparticle_pfekf{i}(:,:,t-1)*Jx'; yPredTmp = feval('bshfun',muPred_pfekf(:,t),u(:,t),t); % COMPUTE THE JACOBIAN: St = u(1,t); % Index price. tm = u(2,t); % Time to maturity. r = muPred_pfekf(1,t); % Risk free interest rate. sig = muPred_pfekf(2,t); % Volatility. d1 = (log(St) + (r+0.5*(sig^2))*tm ) / (sig * (tm^0.5)); d2 = d1 - sig * (tm^0.5); % Differentials of call price dcsig = St * sqrt(tm) * exp(-d1^2) / sqrt(2*pi); dcr = tm * exp(-r*tm) * normcdf(d2); % Differentials of put price dpsig = dcsig; dpr = -tm * exp(-r*tm) * normcdf(-d2); Jy = [dcr dpr; dcsig dpsig]'; % Jacobian for bshfun. % APPLY THE EKF UPDATE EQUATIONS: M = R_pfekf + Jy*PPred_pfekf*Jy'; % Innovations covariance. K = PPred_pfekf*Jy'*inv(M); % Kalman gain. mu_pfekf(:,t,i) = muPred_pfekf(:,t) + K*(y(:,t)-yPredTmp); % Mean of proposal. P_pfekf(:,:,t) = PPred_pfekf - K*Jy*PPred_pfekf; % Variance of proposal. xparticlePred_pfekf(:,t,i) = mu_pfekf(:,t,i) + sqrtm(P_pfekf(:,:,t))*randn(2,1); PparticlePred_pfekf{i}(:,:,t) = P_pfekf(:,:,t); end; % EVALUATE IMPORTANCE WEIGHTS: % ============================ % For our choice of proposal, the importance weights are give by: for i=1:N, yPred_pfekf(:,t,i) = feval('bshfun',xparticlePred_pfekf(:,t,i),u(:,t),t); lik = exp(-0.5*(y(:,t)-yPred_pfekf(:,t,i))'*inv(R)*(y(:,t)-yPred_pfekf(:,t,i)) ) + 1e-99; prior = exp(-0.5*(xparticlePred_pfekf(:,t,i)- xparticle_pfekf(:,t-1,i))'*inv(Q) * (xparticlePred_pfekf(:,t,i)-xparticle_pfekf(:,t-1,i) ))+ 1e-99; proposal = inv(sqrt(det(PparticlePred_pfekf{i}(:,:,t)))) * exp(-0.5*(xparticlePred_pfekf(:,t,i)-mu_pfekf(:,t,i))'*inv(PparticlePred_pfekf{i}(:,:,t)) * (xparticlePred_pfekf(:,t,i)-mu_pfekf(:,t,i)))+ 1e-99; w(t,i) = lik*prior/proposal; end; w(t,:) = w(t,:)./sum(w(t,:)); % Normalise the weights. % SELECTION STEP: % =============== % Here, we give you the choice to try three different types of % resampling algorithms. Note that the code for these algorithms % applies to any problem! if resamplingScheme == 1 outIndex = residualR(1:N,w(t,:)'); % Residual resampling. elseif resamplingScheme == 2 outIndex = systematicR(1:N,w(t,:)'); % Systematic resampling. else outIndex = multinomialR(1:N,w(t,:)'); % Multinomial resampling. end; xparticle_pfekf(:,t,:) = xparticlePred_pfekf(:,t,outIndex); % Keep particles with % resampled indices. for i=1:N, Pparticle_pfekf{i} = PparticlePred_pfekf{outIndex(i)}; end;end; % End of t loop.time_pfekf = toc;%%%%%%%%%%%%%%% PERFORM SEQUENTIAL MONTE CARLO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ======== UKF proposal ======== %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfukf = ones(2,T,N); % These are the particles for the estimate % of x. Note that there's no need to store % them for all t. We're only doing this to % show you all the nice plots at the end.Pparticle_pfukf = cell(N,1); % Particles for the covariance of x.%Initializationfor i=1:N, xparticle_pfukf(1,1,i) = initr; % sqrt(initr)*randn(1,1); xparticle_pfukf(2,1,i) = initsig; % sqrt(initsig)*randn(1,1); Pparticle_pfukf{i} = ones(2,2,T); for t=1:T, Pparticle_pfukf{i}(:,:,t) = diag([P01_ukf P02_ukf]); endend xparticlePred_pfukf = ones(2,T,N); % One-step-ahead predicted values of the states.PparticlePred_pfukf = Pparticle_pfukf; % One-step-ahead predicted values of P.yPred_pfukf = ones(2,T,N); % One-step-ahead predicted values of y.w = ones(T,N); % Importance weights.muPred_pfukf = ones(2,T); % EKF O-s-a estimate of the mean of the states.PPred_pfukf = ones(2,2); % EKF O-s-a estimate of the variance of the states.mu_pfukf = ones(2,T,N); % EKF estimate of the mean of the states.P_pfukf = ones(2,2,T); % EKF estimate of the variance of the states.error=0;disp(' ');tic;if (1),for t=2:T, fprintf('PF-UKF : t = %i / %i \r',t,T); fprintf('\n') % PREDICTION STEP: % ================ % We use the UKF as proposal. for i=1:N, % Call Unscented Kalman Filter [mu_pfukf(:,t,i),P_pfukf(:,:,t)]=ukf(xparticle_pfukf(:,t-1,i),Pparticle_pfukf{i}(:,:,t-1),u(:,t),Q_pfukf,'ukf_bsffun',y(:,t),R_pfukf,'ukf_bshfun',t,alpha,beta,kappa); xparticlePred_pfukf(:,t,i) = mu_pfukf(:,t,i) + sqrtm(P_pfukf(:,:,t))*randn(2,1); PparticlePred_pfukf{i}(:,:,t) = P_pfukf(:,:,t); end; % EVALUATE IMPORTANCE WEIGHTS: % ============================ % For our choice of proposal, the importance weights are give by: for i=1:N, yPred_pfukf(:,t,i) = feval('bshfun',xparticlePred_pfukf(:,t,i),u(:,t),t); lik = exp(-0.5*(y(:,t)-yPred_pfukf(:,t,i))'*inv(R)*(y(:,t)-yPred_pfukf(:,t,i)) ) + 1e-99; prior = exp(-0.5*(xparticlePred_pfukf(:,t,i)- xparticle_pfukf(:,t-1,i))'*inv(Q) * (xparticlePred_pfukf(:,t,i)-xparticle_pfukf(:,t-1,i) ))+ 1e-99; proposal = inv(sqrt(det(PparticlePred_pfukf{i}(:,:,t)))) * exp(-0.5*(xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i))'*inv(PparticlePred_pfukf{i}(:,:,t)) * (xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i)))+ 1e-99; w(t,i) = lik*prior/proposal; end; w(t,:) = w(t,:)./sum(w(t,:)); % Normalise the weights. % SELECTION STEP: % =============== % Here, we give you the choice to try three different types of % resampling algorithms. Note that the code for these algorithms % applies to any problem! if resamplingScheme == 1 outIndex = residualR(1:N,w(t,:)'); % Residual resampling. elseif resamplingScheme == 2 outIndex = systematicR(1:N,w(t,:)'); % Systematic resampling. else outIndex = multinomialR(1:N,w(t,:)'); % Multinomial resampling. end; xparticle_pfukf(:,t,:) = xparticlePred_pfukf(:,t,outIndex); % Keep particles with % resampled indices. for i=1:N, Pparticle_pfukf{i} = PparticlePred_pfukf{outIndex(i)}; end end; % End of t loop.endtime_pfukf = toc;% Compute posterior mean predictions:yPFEKFmeanC=zeros(1,T);yPFEKFmeanP=zeros(1,T);for t=1:T, yPFEKFmeanC(t) = mean(yPred_pfekf(1,t,:)); yPFEKFmeanP(t) = mean(yPred_pfekf(2,t,:)); end; yPFUKFmeanC=zeros(1,T);yPFUKFmeanP=zeros(1,T);for t=1:T, yPFUKFmeanC(t) = mean(yPred_pfukf(1,t,:)); yPFUKFmeanP(t) = mean(yPred_pfukf(2,t,:)); end; errorcTrivial(expr) = norm(C(104:204)-C(103:203));errorpTrivial(expr) = norm(P(104:204)-P(103:203));errorcEKF(expr) =norm(C(104:204)-yPred(1,104:204));errorpEKF(expr) =norm(P(104:204)-yPred(2,104:204));errorcUKF(expr) =norm(C(104:204)-yPred_ukf(1,104:204));errorpUKF(expr) =norm(P(104:204)-yPred_ukf(2,104:204));errorcPF(expr) =norm(C(104:204)-yPFmeanC(104:204));errorpPF(expr) =norm(P(104:204)-yPFmeanP(104:204));errorcPFEKF(expr) =norm(C(104:204)-yPFEKFmeanC(104:204));errorpPFEKF(expr) =norm(P(104:204)-yPFEKFmeanP(104:204));errorcPFUKF(expr) =norm(C(104:204)-yPFUKFmeanC(104:204));errorpPFUKF(expr) =norm(P(104:204)-yPFUKFmeanP(104:204));disp(' ');disp(['Experiment ' num2str(expr) ' of ' num2str(no_of_experiments) ' : Mean square errors sqrt(sum((errors).^2))']);disp('------------------------------------------------------------');disp(' ');disp(['Trivial call = ' num2str(errorcTrivial(expr))]);disp(['EKF call = ' num2str(errorcEKF(expr))]);disp(['UKF call = ' num2str(errorcUKF(expr))]);disp(['PF call = ' num2str(errorcPF(expr))]);disp(['PF-EKF call = ' num2str(errorcPFEKF(expr))]);disp(['PF-UKF call = ' num2str(errorcPFUKF(expr))]);disp(['Trivial put = ' num2str(errorpTrivial(expr))]);disp(['EKF put = ' num2str(errorpEKF(expr))]);disp(['UKF put = ' num2str(errorpUKF(expr))]);disp(['PF put = ' num2str(errorpPF(expr))]);disp(['PF-EKF put = ' num2str(errorpPFEKF(expr))]);disp(['PF-UKF put = ' num2str(errorpPFUKF(expr))]);figure(9)bti=20;lw=2;clf;subplot(211)p0=plot(bti:T,y(1,bti:T),'k-o','linewidth',lw); hold on;p1=plot(bti:T,yPFmeanC(bti:T),'m','linewidth',lw);p2=plot(bti:T,yPFEKFmeanC(bti:T),'r','linewidth',lw);p3=plot(bti:T,yPFUKFmeanC(bti:T),'b','linewidth',lw); hold off;ylabel('Call price','fontsize',15);legend([p0 p1 p2 p3],'Actual price','PF prediction','PF-EKF prediction','PF-UKF prediction');v=axis;axis([bti T v(3) v(4)]);subplot(212)p0=plot(bti:T,y(2,bti:T),'k-o','linewidth',lw); hold on;p1=plot(bti:T,yPFmeanP(bti:T),'m','linewidth',lw);p2=plot(bti:T,yPFEKFmeanP(bti:T),'r','linewidth',lw);p3=plot(bti:T,yPFUKFmeanP(bti:T),'b','linewidth',lw); hold off;ylabel('Put price','fontsize',15);legend([p0 p1 p2 p3],'Actual price','PF prediction','PF-EKF prediction','PF-UKF prediction');xlabel('Time (days)','fontsize',15)v=axis;axis([bti T v(3) v(4)]);zoom on;end % END OF MAIN LOOP% CALCULATE MEAN AND VARIANCE OF EXPERIMENT RESULTS% meanserrorcTrivial_mean = mean(errorcTrivial);errorcEKF_mean = mean(errorcEKF);errorcUKF_mean = mean(errorcUKF);errorcPF_mean = mean(errorcPF);errorcPFEKF_mean = mean(errorcPFEKF);errorcPFUKF_mean = mean(errorcPFUKF);errorpTrivial_mean = mean(errorpTrivial);errorpEKF_mean = mean(errorpEKF);errorpUKF_mean = mean(errorpUKF);errorpPF_mean = mean(errorpPF);errorpPFEKF_mean = mean(errorpPFEKF);errorpPFUKF_mean = mean(errorpPFUKF);% varianceserrorcTrivial_var = var(errorcTrivial);errorcEKF_var = var(errorcEKF);errorcUKF_var = var(errorcUKF);errorcPF_var = var(errorcPF);errorcPFEKF_var = var(errorcPFEKF);errorcPFUKF_var = var(errorcPFUKF);errorpTrivial_var = var(errorpTrivial);errorpEKF_var = var(errorpEKF);errorpUKF_var = var(errorpUKF);errorpPF_var = var(errorpPF);errorpPFEKF_var = var(errorpPFEKF);errorpPFUKF_var = var(errorpPFUKF);disp(' ');disp('Mean and Variance of MSE ');disp('-------------------------');disp(' ');disp(['Trivial call : ' num2str(errorcTrivial_mean) ' (' num2str(errorcTrivial_var) ')']);disp(['EKF call : ' num2str(errorcEKF_mean) ' (' num2str(errorcEKF_var) ')']);disp(['UKF call : ' num2str(errorcUKF_mean) ' (' num2str(errorcUKF_var) ')']);disp(['PF call : ' num2str(errorcPF_mean) ' (' num2str(errorcPF_var) ')']);disp(['PF-EKF call : ' num2str(errorcPFEKF_mean) ' (' num2str(errorcPFEKF_var) ')']);disp(['PF-UKF call : ' num2str(errorcPFUKF_mean) ' (' num2str(errorcPFUKF_var) ')']);disp(['Trivial put : ' num2str(errorpTrivial_mean) ' (' num2str(errorpTrivial_var) ')']);disp(['EKF put : ' num2str(errorpEKF_mean) ' (' num2str(errorpEKF_var) ')']);disp(['UKF put : ' num2str(errorpUKF_mean) ' (' num2str(errorpUKF_var) ')']);disp(['PF put : ' num2str(errorpPF_mean) ' (' num2str(errorpPF_var) ')']);disp(['PF-EKF put : ' num2str(errorpPFEKF_mean) ' (' num2str(errorpPFEKF_var) ')']);disp(['PF-UKF put : ' num2str(errorpPFUKF_mean) ' (' num2str(errorpPFUKF_var) ')']);figure(10);subplot(211);p1=semilogy(errorcTrivial,'k','linewidth',lw); hold on;p2=semilogy(errorcEKF,'y','linewidth',lw);p3=semilogy(errorcUKF,'g','linewidth',lw);p4=semilogy(errorcPF,'m','linewidth',lw);p5=semilogy(errorcPFEKF,'r','linewidth',lw);p6=semilogy(errorcPFUKF,'b','linewidth',lw); hold off;legend([p1 p2 p3 p4 p5 p6],'trivial','EKF','UKF','PF','PF-EKF','PF-UKF');ylabel('MSE','fontsize',12);xlabel('experiment','fontsize',12);title('CALL Options Mean Prediction Error','fontsize',14);subplot(212);p1=semilogy(errorpTrivial,'k','linewidth',lw); hold on;p2=semilogy(errorpEKF,'y','linewidth',lw);p3=semilogy(errorpUKF,'g','linewidth',lw);p4=semilogy(errorpPF,'m','linewidth',lw);p5=semilogy(errorpPFEKF,'r','linewidth',lw);p6=semilogy(errorpPFUKF,'b','linewidth',lw); hold off;legend([p1 p2 p3 p4 p5 p6],'trivial','EKF','UKF','PF','PF-EKF','PF-UKF');ylabel('MSE','fontsize',12);xlabel('experiment','fontsize',12);title('PUT Options Mean Prediction Error','fontsize',14);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -