⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blackscholes.m

📁 upf滤波算法源程序
💻 M
📖 第 1 页 / 共 2 页
字号:
% PURPOSE : Demonstrate the differences between the following% filters on an options pricing problem.%           %           1) Extended Kalman Filter  (EKF)%           2) Unscented Kalman Filter (UKF)%           3) Particle Filter         (PF)%           4) PF with EKF proposal    (PFEKF)%           5) PF with UKF proposal    (PFUKF)% For more details refer to:% AUTHORS  : Nando de Freitas      (jfgf@cs.berkeley.edu)%            Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)%            + We re-used a bit of code by Mahesan Niranjan.             % DATE     : 17 August 2000clear all;echo off;path('./ukf',path);path('./data',path);% INITIALISATION AND PARAMETERS:% ==============================doPlot = 0;                 % 1 plot online. 0 = only plot at the end.g1 = 3;                     % Paramater of Gamma transition prior.g2 = 2;                     % Parameter of Gamman transition prior.                            % Thus mean = 3/2 and var = 3/4.T = 204;                    % Number of time steps.R = diag([1e-5 1e-5]);      % EKF's measurement noise variance. Q = diag([1e-7 1e-5]);      % EKF's process noise variance.P01 = 0.1;                  % EKF's initial variance of the                            % interest rate.P02 = 0.1;                  % EKF's initial variance of the volatility.N = 10;                     % Number of particles.optionNumber = 1;           % There are 5 pairs of options.resamplingScheme = 1;       % The possible choices are                            % systematic sampling (2),                            % residual (1)                            % and multinomial (3).                             % They're all O(N) algorithms. P01_ukf = 0.1;P02_ukf = 0.1;			    Q_ukf = Q;R_ukf = R;			    initr = .01;initsig = .15;Q_pfekf = 10*1e-5*eye(2);R_pfekf = 1e-6*eye(2);Q_pfukf = Q_pfekf;R_pfukf = R_pfekf;			    alpha = 1;                     % UKF : point scaling parameterbeta  = 2;                     % UKF : scaling parameter for higher order terms of Taylor series expansion kappa = 1;                     % UKF : sigma point selection scaling parameter (best to leave this = 0)no_of_experiments = 1;         % Number of times the experiment is                               % repeated (for statistical purposes).% DATA STRUCTURES FOR RESULTS% ===========================errorcTrivial = zeros(no_of_experiments,1);errorpTrivial = errorcTrivial;errorcEKF     = errorcTrivial;errorpEKF     = errorcTrivial;errorcUKF     = errorcTrivial;errorpUKF     = errorcTrivial;errorcPF      = errorcTrivial;errorpPF      = errorcTrivial;errorcPFEKF   = errorcTrivial;errorpPFEKF   = errorcTrivial;errorcPFUKF   = errorcTrivial;errorpPFUKF   = errorcTrivial;% LOAD THE DATA:% =============fprintf('\n')fprintf('Loading the data')fprintf('\n')load c2925.prn;         load p2925.prn;load c3025.prn;         load p3025.prn;load c3125.prn;         load p3125.prn;load c3225.prn;         load p3225.prn;load c3325.prn;         load p3325.prn;X=[2925; 3025; 3125; 3225; 3325];[d1,i1]=sort(c2925(:,1));  Y1=c2925(i1,:);      Z1=p2925(i1,:);[d2,i2]=sort(c3025(:,1));  Y2=c3025(i2,:);      Z2=p3025(i2,:);[d3,i3]=sort(c3125(:,1));  Y3=c3125(i3,:);      Z3=p3125(i3,:);[d4,i4]=sort(c3225(:,1));  Y4=c3225(i4,:);      Z4=p3225(i4,:);[d5,i5]=sort(c3325(:,1));  Y5=c3325(i5,:);      Z5=p3325(i5,:);d=Y1(:,1); % d - date to maturity.St(1,:) = Y1(:,3)';   C(1,:) = Y1(:,2)';  P(1,:) = Z1(:,2)';St(2,:) = Y2(:,3)';   C(2,:) = Y2(:,2)';  P(2,:) = Z2(:,2)';St(3,:) = Y3(:,3)';   C(3,:) = Y3(:,2)';  P(3,:) = Z3(:,2)';St(4,:) = Y4(:,3)';   C(4,:) = Y4(:,2)';  P(4,:) = Z4(:,2)';St(5,:) = Y5(:,3)';   C(5,:) = Y5(:,2)';  P(5,:) = Z5(:,2)';% St - Stock price.% C - Call option price.% P - Put Option price.% X - Strike price.% Normalise with respect to the strike price:for i=1:5   Cox(i,:) = C(i,:) / X(i);   Sox(i,:) = St(i,:) / X(i);   Pox(i,:) = P(i,:) / X(i);endCpred=zeros(T,5);Ppred=zeros(T,5);% PLOT THE LOADED DATA:% ====================figure(1)clf;plot(Cox');ylabel('Call option prices','fontsize',15);xlabel('Time to maturity','fontsize',15);fprintf('\n')fprintf('Press a key to continue')  pause;fprintf('\n')fprintf('\n')fprintf('Training has started')fprintf('\n')% SPECIFY THE INPUTS AND OUTPUTS% ==============================ii=optionNumber;   % Only one call price. Change 1 to 3, etc. for other prices.X = X(ii,1);St = Sox(ii,1:T);C = Cox(ii,1:T);P = Pox(ii,1:T);counter=1:1:T;tm = (224*ones(size(counter))-counter)/260;u = [St' tm']';y = [C' P']'; % Call and put prices.% MAIN LOOP% =========for expr=1:no_of_experiments,  rand('state',sum(100*clock));   % Shuffle the pack!  randn('state',sum(100*clock));   % Shuffle the pack!    %%%%%%%%%%%%%%%  PERFORM EKF and UKF ESTIMATION  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ==============================  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============mu_ekf = ones(2,T);       % EKF estimate of the mean of the states.Inn = ones(2,2,T);        % Innovations Covariance.Inn_ukf = Inn;mu_ekf(1,1) = initr;mu_ekf(2,1) = initsig;P_ekf = ones(2,2,T);      % EKF estimate of the variance of the states.for t=1:T  P_ekf(:,:,t)= diag([P01 P02]);end;mu_ukf = mu_ekf;        % UKF estimate of the mean of the states.P_ukf = P_ekf;          % UKF estimate of the variance of the states.yPred = ones(2,T);      % One-step-ahead predicted values of y.yPred_ukf = yPred;mu_ekfPred = mu_ekf;    % EKF O-s-a estimate of the mean of the states.PPred =eye(2);          % EKF O-s-a estimate of the variance of the states.disp(' ');for t=2:T,      fprintf('EKF & UKF : t = %i / %i  \r',t,T);  fprintf('\n')    % EKF PREDICTION STEP:  % ====================   mu_ekfPred(:,t) = feval('bsffun',mu_ekf(:,t-1),t);  Jx = eye(2);  % Jacobian for bsffun.    PPred = Q + Jx*P_ekf(:,:,t-1)*Jx';     % EKF CORRECTION STEP:  % ====================  yPred(:,t) = feval('bshfun',mu_ekfPred(:,t),u(:,t),t);  % COMPUTE THE JACOBIAN:  St  = u(1,t);            % Index price.  tm  = u(2,t);            % Time to maturity.  r   = mu_ekfPred(1,t);   % Risk free interest rate.  sig = mu_ekfPred(2,t);   % Volatility.    d1 = (log(St) + (r+0.5*(sig^2))*tm ) / (sig * (tm^0.5));  d2 = d1 - sig * (tm^0.5);    % Differentials of call price  dcsig = St * sqrt(tm) * exp(-d1^2) / sqrt(2*pi);  dcr   = tm * exp(-r*tm) * normcdf(d2);  % Differentials of put price  dpsig = dcsig;  dpr   = -tm * exp(-r*tm) * normcdf(-d2);  Jy = [dcr dpr; dcsig dpsig]'; % Jacobian for bshfun.  % APPLY THE EKF UPDATE EQUATIONS:  M = R + Jy*PPred*Jy';                 % Innovations covariance.  Inn(:,:,t)=M;  K = PPred*Jy'*inv(M);                 % Kalman gain.  mu_ekf(:,t) = mu_ekfPred(:,t) + K*(y(:,t)-yPred(:,t));  P_ekf(:,:,t) = PPred - K*Jy*PPred;    % Full Unscented Kalman Filter step  % =================================  [mu_ukf(:,t),P_ukf(:,:,t),zab1,zab2,yPred_ukf(:,t),inov_ukf,Inn_ukf(:,:,t),K_ukf]=ukf(mu_ukf(:,t-1),P_ukf(:,:,t-1),u(:,t),Q_ukf,'ukf_bsffun',y(:,t),R_ukf,'ukf_bshfun',t,alpha,beta,kappa);  end;   % End of t loop.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-- CALCULATE PERFORMANCE --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%figure(3)clf;subplot(211)p1=plot(1:T,mu_ekf(1,:),'r','linewidth',2);hold on;p2=plot(1:T,mu_ukf(1,:),'b','linewidth',2);hold off;legend([p1 p2],'ekf','ukf');ylabel('Interest rate','fontsize',15)subplot(212)p1=plot(1:T,mu_ekf(2,:),'r','linewidth',2);hold on;p2=plot(1:T,mu_ukf(2,:),'b','linewidth',2);hold off;ylabel('Volatility','fontsize',15);xlabel('Time (days)','fontsize',15)zoom on;% Transform innovations covariance for plotting.Inn11=zeros(1,T);Inn22=zeros(1,T);Pekf11=zeros(1,T);Pekf22=zeros(1,T);for t=1:T,  Inn11(t)=Inn(1,1,t);  Inn22(t)=Inn(2,2,t);  Inn11_ukf(t)=Inn_ukf(1,1,t);  Inn22_ukf(t)=Inn_ukf(2,2,t);  Pekf11(t)=P_ekf(1,1,t);  Pekf22(t)=P_ekf(2,2,t);  Pukf11(t)=P_ukf(1,1,t);  Pukf22(t)=P_ukf(2,2,t);end;figure(1)clf;subplot(211)plot(1:T,y(1,:),'r--',1:T,yPred(1,:),'b','linewidth',2);hold on;plot(1:T,yPred(1,:)+2*sqrt(Inn11),'k',1:T,yPred(1,:)-2*sqrt(Inn11),'k')ylabel('Call price','fontsize',15)legend('Actual price','Prediction');axis([0 204 0.03 .22])title('EKF');subplot(212)plot(1:T,y(2,:),'r--',1:T,yPred(2,:),'b','linewidth',2);hold on;plot(1:T,yPred(2,:)+2*sqrt(Inn22),'k',1:T,yPred(2,:)-2*sqrt(Inn22),'k')ylabel('Put price','fontsize',15)xlabel('Time (days)','fontsize',15)axis([0 204 0 .06])zoom on;legend('Actual price','Prediction');figure(2)clf;subplot(211)plot(1:T,y(1,:),'r--',1:T,yPred_ukf(1,:),'b','linewidth',2);hold on;plot(1:T,yPred_ukf(1,:)+2*sqrt(Inn11_ukf),'k',1:T,yPred_ukf(1,:)-2*sqrt(Inn11_ukf),'k')ylabel('Call price','fontsize',15)legend('Actual price','Prediction');axis([0 204 0.03 .22])title('UKF');subplot(212)plot(1:T,y(2,:),'r--',1:T,yPred_ukf(2,:),'b','linewidth',2);hold on;plot(1:T,yPred_ukf(2,:)+2*sqrt(Inn22_ukf),'k',1:T,yPred_ukf(2,:)-2*sqrt(Inn22_ukf),'k')ylabel('Put price','fontsize',15)xlabel('Time (days)','fontsize',15)axis([0 204 0 .06])zoom on;legend('Actual price','Prediction');%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ==============================  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pf = ones(2,T,N);      % These are the particles for the estimate                                 % of x. Note that there's no need to store                                 % them for all t. We're only doing this to                                 % show you all the nice plots at the end.xparticlePred_pf = ones(2,T,N);    % One-step-ahead predicted values of the states.yPred_pf = ones(2,T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                   % Importance weights.% Initialisation:for i=1:N,  xparticle_pf(1,1,i) = initr; % sqrt(initr)*randn(1,1);  xparticle_pf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);end;disp(' '); tic;                             % Initialize timer for benchmarkingfor t=2:T,      fprintf('PF :  t = %i / %i  \r',t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the transition prior as proposal.  for i=1:N,    xparticlePred_pf(:,t,i) = feval('bsffun',xparticle_pf(:,t-1,i),t) + sqrtm(Q)*randn(2,1);      end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pf(:,t,i) = feval('bshfun',xparticlePred_pf(:,t,i),u(:,t),t);            lik = exp(-0.5*(y(:,t)-yPred_pf(:,t,i))'*inv(R)*(y(:,t)-yPred_pf(:,t,i)) ) + 1e-99; % Deal with ill-conditioning.    w(t,i) = lik;      end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pf(:,t,:) = xparticlePred_pf(:,t,outIndex); % Keep particles with                                                    % resampled indices.end;   % End of t loop.time_pf = toc;    % How long did this take?% Compute posterior mean predictions:yPFmeanC=zeros(1,T);yPFmeanP=zeros(1,T);for t=1:T,  yPFmeanC(t) = mean(yPred_pf(1,t,:));  yPFmeanP(t) = mean(yPred_pf(2,t,:));  end;  figure(4)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0:1e-3:20e-3];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(r_t|S_t,t_m,C_t,P_t)','fontsize',15)for t=11:20:200,  [range,domain]=hist(xparticle_pf(1,t,:),thex);  waterfall(domain,t,range/sum(range));end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -