📄 dan_pdgm.cpp
字号:
//
// File = dan_pdgm.cpp
//
#include <stdlib.h>
#include <fstream>
#include "parmfile.h"
#include "model_graph.h"
#include "dan_pdgm.h"
#include "fft_T.h"
#include "dump_spect.h"
#ifdef _DEBUG
extern ofstream *DebugFile;
#endif
extern ParmFile *ParmInput;
extern int PassNumber;
//======================================================
template <class T>
DaniellPeriodogram<T>::DaniellPeriodogram( char* instance_name,
PracSimModel* outer_model,
Signal<T>* in_sig )
:PracSimModel( instance_name,
outer_model )
{
MODEL_NAME(DaniellPeriodogram);
OPEN_PARM_BLOCK;
GET_INT_PARM(Seg_Len);
GET_INT_PARM(Fft_Len);
GET_INT_PARM(Hold_Off);
GET_INT_PARM(Big_P);
Psd_File_Name = new char[64];
strcpy(Psd_File_Name, "\0");
GET_STRING_PARM(Psd_File_Name);
GET_DOUBLE_PARM(Freq_Norm_Factor);
GET_BOOL_PARM(Output_In_Decibels);
GET_BOOL_PARM(Plot_Two_Sided);
GET_BOOL_PARM(Halt_When_Completed);
In_Sig = in_sig;
MAKE_INPUT(In_Sig);
Time_Seg = new T[Seg_Len];
Dan_Pdgm = new double[Fft_Len];
Freq_Seg = new std::complex<double>[Fft_Len];
Psd_File = new ofstream(Psd_File_Name, ios::out);
Processing_Completed = false;
}
template <class T>
DaniellPeriodogram<T>::~DaniellPeriodogram( void ){ };
template <class T>
void DaniellPeriodogram<T>::Initialize(void)
{
Samps_Needed = Seg_Len;
Block_Size = In_Sig->GetBlockSize();
Samp_Intvl = In_Sig->GetSampIntvl();
Delta_F = 1.0/(Samp_Intvl*Fft_Len);
};
template <class T>
int DaniellPeriodogram<T>::Execute()
{
int k, m,is;
double scale_factor, sum;
#ifdef _DEBUG
*DebugFile << "In DaniellPeriodogram::Execute\0" << endl;
#endif
if(Processing_Completed) return(_MES_AOK);
if(PassNumber < Hold_Off+1) return (_MES_AOK);
//--------------------------------
// Get pointers for buffers
T *in_sig_ptr = GET_INPUT_PTR(In_Sig);
int samps_avail = Block_Size;
while(Samps_Needed <= samps_avail)
{
// The new input block has enough samples to finish a segment.
// Fill up FFT buffer by getting Samps_Needed input samples.
for(is=Samps_Needed; is>0; is--)
{
Time_Seg[Seg_Len - is] = *in_sig_ptr++;
}
samps_avail -= Samps_Needed;
scale_factor = Seg_Len*(2*Big_P+1);
// Perform FFT
FFT<double>( Time_Seg,
Freq_Seg,
Seg_Len,
Fft_Len);
//--------------------------------------
// Compute firts P points of periodogram
for(m=0; m<Big_P; m++)
{
sum = 0.0;
for( k=m-Big_P; k<0; k++)
{
sum += std::norm(Freq_Seg[Fft_Len + k]);
}
for(k=0; k<=(m+Big_P); k++)
{
sum += std::norm(Freq_Seg[k]);
}
Dan_Pdgm[m] = Samp_Intvl*sum/scale_factor;
}
//-------------------------------------------------------
// Compute periodogram points P thru (N/2)-1
for(m=Big_P; m<(Fft_Len/2); m++)
{
sum = 0.0;
for( k=m-Big_P; k<=m+Big_P; k++)
{
sum += std::norm(Freq_Seg[k]);
}
Dan_Pdgm[m] = Samp_Intvl*sum/scale_factor;
}
// is it time to dump the results?
// if(Segs_In_Est == Num_Segs_To_Avg)
// {
DumpSpectrum( Dan_Pdgm,
Fft_Len,
Delta_F,
Freq_Norm_Factor,
Output_In_Decibels,
Plot_Two_Sided,
Psd_File);
Processing_Completed = true;
Psd_File->close();
if(Halt_When_Completed)
{
#ifdef _DEBUG
*DebugFile << "Execution halted by " << GetModelName() << endl;
#endif
exit(0);
}
// }
}// end of while
// The number of avail new samples is not sufficient to finish a segment.
// Copy the avaialble samples and then wait for the next pass
// to get some more.
for(is=0; is<samps_avail; is++)
{
Time_Seg[Seg_Len - Samps_Needed + is] = *in_sig_ptr++;
}
Samps_Needed -= samps_avail;
return(_MES_AOK);
}
template DaniellPeriodogram<float>;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -