📄 demopsobehavior.m
字号:
% demopsobehavior.m
% demo of the pso.m function
% the pso tries to find the minimum of the f6 function, a standard
% benchmark
%
% on the plots, blue is current position, green is Pbest, and red is Gbest
% Brian Birge
% Rev 2.0
% 10/30/03
clear all
close all
clc
help demopsobehavior
warning off
%aviobj = avifile(['demopsobehavior.avi']);
%aviobj.Quality=100;
%aviobj.Compression='Cinepak';
%aviobj.fps=15;
%xrng=input('Input search range for X, e.g. [-10,10] ? ');
%yrng=input('Input search range for Y ? ');
xrng=[-20,20];
yrng=[-20,20];
% if =0 then we look for minimum, =1 then max
% minmax=input('Search for min (0) or max (1) ?');
minmax=1;
mvden = input('Max velocity divisor ? ');
ps = input('How many particles? ');
modl = input('Choose PSO model? ');
% note: if errgoal=NaN then unconstrained min or max is performed
if minmax==1
% errgoal=0.97643183; % max for f6 function (close enough for termination)
errgoal=NaN;
else
% errgoal=0; % min
errgoal=NaN;
end
minx = xrng(1);
maxx = xrng(2);
miny = yrng(1);
maxy = yrng(2);
%--------------------------------------------------------------------------
dims=2;
varrange=[];
mv=[];
for i=1:dims
varrange=[varrange;minx maxx];
mv=[mv;(varrange(i,2)-varrange(i,1))/mvden];
end
ac = [2.1,2.1];% acceleration constants, only used for modl=0
Iwt = [0.9,0.6]; % intertia weights, only used for modl=0
shw = 100; % how often to update display
epoch = 20000; % max iterations
wt_end = 1500; % iterations it takes to go from Iwt(1) to Iwt(2), only for modl=0
errgrad = 1e-99; % lowest error gradient tolerance
errgraditer=5000; % max # of epochs without error change >= errgrad
PSOseed = 0; % if=1 then can input particle starting positions, if= 0 then all random
% starting particle positions (first 20 at zero, just for an example)
PSOseedValue = repmat([0],ps-10,1);
psoparams=...
[shw epoch ps ac(1) ac(2) Iwt(1) Iwt(2) ...
wt_end errgrad errgraditer errgoal modl PSOseed];
% run pso
% vectorized version (normally instead of goplotpso4demo use goplotpso or your own)
pso_out=pso_Trelea_vectorized('f6', dims,...
mv, varrange, minmax, psoparams,'goplotpso4demo',PSOseedValue);
%% vectorized version (normally instead of goplotpso4demo use goplotpso or your own)
%[pso_out,tr,te]=pso_Trelea_vectorized('f6', dims,...
% mv, varrange, minmax, psoparams,'goplotpso',PSOseedValue);
%% non-vectorized (much slower but some cost functions can't be vectorized)
% pso_out=pso_Trelea('f6', dims,...
% mv, varrange, minmax, psoparams,'goplotpso4demo');
%--------------------------------------------------------------------------
disp('Best fit parameters: cost = f6(x,y)');
disp([' x = ',num2str(pso_out(1))]);
disp([' y = ',num2str(pso_out(2))]);
disp([' cost = ',num2str(pso_out(3))]);
disp(['mean(te) = ',num2str(mean(te))]);
%aviobj = close(aviobj);
indx=find(bestpos(:,3)<1e-4);
figure
plot(gbest_pred(:,1),gbest_pred(:,2),'g.','Markersize',5)
hold on
plot(bestpos(:,1),bestpos(:,2),'b.','markersize',5)
plot(bestpos(indx,1),bestpos(indx,2),'r.','markersize',8)
%clear all,for i=1:5000, offset(i)=linear_dyn(0.5);, pause(0.01),end,x=offset;,y=x;
%clear all,for i=1:2000, [x(i),y(i)]=spiral_dyn(1,.1);, pause(0.01),end
%plot(x,y,'k-'), grid on, axis equal
%title('red=good match gbest, blue=gbest, black is known')
hold off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -