📄 g726_40.c
字号:
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g726_40.c
*
* Description:
*
* g723_40_encoder(), g723_40_decoder()
*
* These routines comprise an implementation of the CCITT G.723 40Kbps
* ADPCM coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which
* take advantage of workstation attributes, such as hardware 2's
* complement arithmetic.
*
* The deviation from the bit level specification (lookup tables),
* preserves the bit level performance specifications.
*
* As outlined in the G.723 Recommendation, the algorithm is broken
* down into modules. Each section of code below is preceded by
* the name of the module which it is implementing.
*
* The ITU-T G.726 coder is an adaptive differential pulse code modulation
* (ADPCM) waveform coding algorithm, suitable for coding of digitized
* telephone bandwidth (0.3-3.4 kHz) speech or audio signals sampled at 8 kHz.
* This coder operates on a sample-by-sample basis. Input samples may be
* represented in linear PCM or companded 8-bit G.711 (m-law/A-law) formats
* (i.e., 64 kbps). For 32 kbps operation, each sample is converted into a
* 4-bit quantized difference signal resulting in a compression ratio of
* 2:1 over the G.711 format. For 24 kbps 40 kbps operation, the quantized
* difference signal is 3 bits and 5 bits, respectively.
*
* $Log: g726_40.c,v $
* Revision 1.1 2006/06/26 03:02:36 joegenbaclor
* I have decided to include the latest development realease of OPAL tagged Deimos Devel 1 (June 8 2006) as inegrated classes to opensipstack to avoid future version conflicts due to the fast pace in OPAL development. This move is also aimed to reduce the size of projects using OPAL componets such as the soon to be relased OpenSIPPhone.
*
* Revision 1.2 2002/11/20 04:53:16 robertj
* Included optimisations for G.711 and G.726 codecs, thanks Ted Szoczei
*
* Revision 1.1 2002/02/11 23:24:23 robertj
* Updated to openH323 v1.8.0
*
* Revision 1.2 2002/02/10 21:14:54 dereks
* Add cvs log history to head of the file.
* Ensure file is terminated by a newline.
*
*
*
*/
#include "g72x.h"
#include "private.h"
/*
* Maps G.723_40 code word to ructeconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318,
358, 395, 429, 459, 488, 514, 539, 566,
566, 539, 514, 488, 459, 429, 395, 358,
318, 274, 224, 169, 104, 28, -66, -2048};
/* Maps G.723_40 code word to log of scale factor multiplier. */
static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200,
4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
3200, 1856, 1312, 1280, 1248, 768, 448, 448};
/*
* Maps G.723_40 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
0x200, 0x200, 0x200, 0, 0, 0, 0, 0};
static int qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339,
378, 413, 445, 475, 502, 528, 553};
/*
* g723_40_encoder()
*
* Encodes a 16-bit linear PCM, A-law or u-law input sample and returns
* the resulting 5-bit CCITT G.723 40Kbps code.
* Returns -1 if the input coding value is invalid.
*/
int
g726_40_encoder(
int sl,
int in_coding,
g726_state *state_ptr)
{
int sezi;
int sez; /* ACCUM */
int sei;
int se;
int d; /* SUBTA */
int y; /* MIX */
int i;
int dq;
int sr; /* ADDB */
int dqsez; /* ADDC */
switch (in_coding) { /* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl = alaw2linear(sl) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl = ulaw2linear(sl) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* sl of 14-bit dynamic range */
break;
default:
return (-1);
}
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
d = sl - se; /* d = estimation difference */
/* quantize prediction difference */
y = step_size(state_ptr); /* adaptive quantizer step size */
i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */
dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */
sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */
dqsez = sr + sez - se; /* dqsez = pole prediction diff. */
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g723_40_decoder()
*
* Decodes a 5-bit CCITT G.723 40Kbps code and returns
* the resulting 16-bit linear PCM, A-law or u-law sample value.
* -1 is returned if the output coding is unknown.
*/
int
g726_40_decoder(
int i,
int out_coding,
g726_state *state_ptr)
{
int sezi;
int sez; /* ACCUM */
int sei;
int se;
int y; /* MIX */
int dq;
int sr; /* ADDB */
int dqsez;
i &= 0x1f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* adaptive quantizer step size */
dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */
sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
switch (out_coding) {
case AUDIO_ENCODING_ALAW:
return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40));
case AUDIO_ENCODING_ULAW:
return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40));
case AUDIO_ENCODING_LINEAR:
return (sr << 2); /* sr was of 14-bit dynamic range */
default:
return (-1);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -