⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jgapgreedycrossoverengine.java

📁 Traveling Salesman Problem Java Genetic Algorithm Solution, Hope all enjoy it.
💻 JAVA
字号:
/*
 * $Source: f:/cvs/prgm/tsp/src/org/saiko/ai/genetics/tsp/engines/jgapCrossover/JGapGreedyCrossoverEngine.java,v $
 * $Id: JGapGreedyCrossoverEngine.java,v 1.4 2005/08/24 12:33:13 dsaiko Exp $
 * $Date: 2005/08/24 12:33:13 $
 * $Revision: 1.4 $
 * $Author: dsaiko $
 *
 * Traveling Salesman Problem genetic algorithm.
 * This source is released under GNU public licence agreement.
 * dusan@saiko.cz
 * http://www.saiko.cz/ai/tsp/
 * 
 * Change log:
 * $Log: JGapGreedyCrossoverEngine.java,v $
 * Revision 1.4  2005/08/24 12:33:13  dsaiko
 * Documentation finished
 *
 * Revision 1.3  2005/08/23 23:18:04  dsaiko
 * Finished.
 *
 * Revision 1.2  2005/08/22 22:13:53  dsaiko
 * Packages rearanged
 *
 * Revision 1.1  2005/08/22 22:08:51  dsaiko
 * Created engines with heuristics
 *
 * Revision 1.1  2005/08/12 23:52:17  dsaiko
 * Initial revision created
 *
 */

package org.saiko.ai.genetics.tsp.engines.jgapCrossover;

import java.util.Random;

import org.jgap.Chromosome;
import org.jgap.Configuration;
import org.jgap.DefaultFitnessEvaluator;
import org.jgap.FitnessFunction;
import org.jgap.Gene;
import org.jgap.Genotype;
import org.jgap.InvalidConfigurationException;
import org.jgap.Population;
import org.jgap.RandomGenerator;
import org.jgap.event.EventManager;
import org.jgap.impl.BestChromosomesSelector;
import org.jgap.impl.ChromosomePool;
import org.jgap.impl.GreedyCrossover;
import org.jgap.impl.IntegerGene;
import org.jgap.impl.StockRandomGenerator;
import org.jgap.impl.SwappingMutationOperator;
import org.saiko.ai.genetics.tsp.City;
import org.saiko.ai.genetics.tsp.TSPChromosome;
import org.saiko.ai.genetics.tsp.TSPConfiguration;
import org.saiko.ai.genetics.tsp.TSPEngine;
import org.saiko.ai.genetics.tsp.engines.simpleUnisexMutator.SimpleUnisexMutatorEngine;

/**
 * @author Dusan Saiko (dusan@saiko.cz)
 * Last change $Date: 2005/08/24 12:33:13 $
 * 
 * Implements solving the Traveling Salesman Problem using JGap libraries
 * and connecting this to TSPEngine interface so it can be used in the TSP gui
 * 
 * For the population modification, GreeadyCrossover algorithm is used
 * 
 * @see org.saiko.ai.genetics.tsp.engines.simpleUnisexMutatorHibrid2Opt.SimpleUnisexMutatorHibrid2OptEngine
 * @see org.jgap.impl.GreedyCrossover
 * @see org.saiko.ai.genetics.tsp.TSPEngine
 * @see org.jgap.impl.salesman.Salesman
 * @see examples.salesman.TravellingSalesman
 */
public class JGapGreedyCrossoverEngine implements TSPEngine {

   /** String containing the CVS revision. **/
   public final static String CVS_REVISION = "$Revision: 1.4 $";
 

   /**
    * Population of all chromosomes
    */
   protected Genotype   population =null;
   
   
   /**
    * Reference to cities for converting JGap Gene/Chromosome to City/City[]
    */
   protected City       originalCities[]   =null;

   /**
    * Application configuration parameters.
    * @see TSPConfiguration 
    */
   protected TSPConfiguration configuration;
   
   /**
    * Initializes the engine for population size and set of cities
    * @see TSPEngine
    */
   public void initialize(TSPConfiguration appConfiguration, City[] cities) {
      try {
         this.originalCities=cities;
         this.configuration=appConfiguration;

         //set configuration
         Genotype.setConfiguration(createConfiguration());
         Genotype.getConfiguration()
               .setFitnessFunction(createFitnessFunction());
         Genotype.getConfiguration().setSampleChromosome(
               new Chromosome(cities2gene(cities)));
         Genotype.getConfiguration().setPopulationSize(configuration.getInitialPopulationSize());
         Chromosome chromosomes[]=new Chromosome[Genotype.getConfiguration()
               .getPopulationSize()];
         
         //create randomized chromosomes
         for(int i=0; i < chromosomes.length; i++) {
            City[] c=new City[cities.length];
            for(int k=0; k < c.length; k++) {
               c[k]=cities[k];
            }
            randomize(c);
            chromosomes[i]=new Chromosome(cities2gene(c));
         }
         
         population=new Genotype(Genotype.getConfiguration(), 
               new Population(chromosomes));
      } catch(Throwable e) {
         e.printStackTrace();
         throw new RuntimeException(e);
      }
   }   
   /**
    * @param from  
    * @param to 
    * @return cost of traveling between two cities
    * @see City#cost(City)
    * @see City#distance(City)
    */
   public double cost(Gene from, Gene to) {
      IntegerGene g1=(IntegerGene) from;
      IntegerGene g2=(IntegerGene) to;

      City a = getCityById(g1.intValue());
      City b = getCityById(g2.intValue());
      return a.cost(b);
   }

  

   /**
    * Creates fitness function which evaluates the chromosome.
    * @see org.jgap.impl.salesman.Salesman
    * @see examples.salesman.TravellingSalesman
    * @return FitnessFunction
    */
   public FitnessFunction createFitnessFunction() {
      return new FitnessFunction() {

         private static final long serialVersionUID =-4530787614587664634L;

         @Override
         protected double evaluate(Chromosome a_subject) {
            double s=0;
            Gene[] genes=a_subject.getGenes();
            for(int i=0; i < genes.length - 1; i++) {
               s+=cost(genes[i], genes[i + 1]);
            }
            // add distance of coming back:
            s+=cost(genes[genes.length - 1], genes[0]);

            //better fitness = better chromosome -> invert the cost 
            return Long.MAX_VALUE - s;
         }
      };
   }

  /**
    * @return JGap configuration
    * @see org.jgap.impl.salesman.Salesman
    * @see examples.salesman.TravellingSalesman
    */
   public Configuration createConfiguration() {
      try {
         // This is copied from DefaultConfiguration
         // ----------------------------------------
         Configuration config=new Configuration();
         BestChromosomesSelector bestChromsSelector=new BestChromosomesSelector(
               1.0d);
         bestChromsSelector.setDoubletteChromosomesAllowed(false);
         config.addNaturalSelector(bestChromsSelector, true);
         config.setRandomGenerator(new StockRandomGenerator());
         config.setMinimumPopSizePercent(0);
         config.setEventManager(new EventManager());
         config.setFitnessEvaluator(new DefaultFitnessEvaluator());
         config.setChromosomePool(new ChromosomePool());
         config.setKeepPopulationSizeConstant(false);
         // These are different:
         // -----------------------------------------
         GreedyCrossover o1=new GreedyCrossover();
         o1.setStartOffset(0);
         config.addGeneticOperator(o1);
         // mutation ratio is 1/parameter
         SwappingMutationOperator o2=new SwappingMutationOperator(
               (int) (1 / configuration.getMutationRatio()));
         o2.setStartOffset(0);
         config.addGeneticOperator(o2);
         return config;
      } catch(InvalidConfigurationException e) {
         throw new RuntimeException(e);
      }
   }


   /**
    * Converts array of cities into array of integer genes
    * IntegerGene is JGap gene holding the city id
    * @param cities
    * @return array of IntegerGene
    * @see City#getId()
    */
   protected IntegerGene[] cities2gene(City cities[]) {
      IntegerGene[] gene=new IntegerGene[cities.length];
      for(int i=0; i < cities.length; i++) {
         gene[i]=new IntegerGene();
         gene[i].setAllele(cities[i].getId());
      }
      return gene;
   }

   /**
    * Converts array of integer genes into array of cities
    * IntegerGene is JGap gene holding the city id
    * @param genes
    * @return array of IntegerGene
    * @see City#getId()
    */
   protected City[] genes2cities(Gene genes[]) {
      City[] c=new City[genes.length];
      for(int i=0; i < originalCities.length; i++) {
         c[i]=getCityById((Integer) genes[i].getAllele());
      }
      return c;
   }

   /**
    * @param id
    * @return city from id
    */
   protected City getCityById(int id) {
      return originalCities[id];
   }

   /**
    * @see TSPEngine
    */
   public int getPopulationSize() {
      return population.getPopulation().size();
   }

   /**
    * @see TSPEngine
    */
   public TSPChromosome getBestChromosome() {
      return new TSPChromosome(genes2cities(population.getFittestChromosome()
            .getGenes()));
   }

   /**
    * @see TSPEngine
    */
   public void nextGeneration() {
      population.evolve();
   }

   /**
    * Randomizes the array of cities
    * @param cities 
    */
   void randomize(City[] cities) {
      RandomGenerator rnd=Genotype.getConfiguration().getRandomGenerator();
      SimpleUnisexMutatorEngine.randomize((Random) rnd, cities);
   }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -