⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fuz_id.m

📁 The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB lan
💻 M
字号:
function [centers,bases,par,bias]=fuz_id(comp,training_set)%FUZ_ID		Identification of the parameters of a Fuzzy Model%%  [centers,bases,par,bias]=fuz_id(comp,training_set)%%	centers[no_rules,no_var]%	bases[no_rules,no_var]%	par[no_rules,no_par]            where no_par=1 if model='constant'%				     and no_par=no_var+1 if model='linear'%	bias[1,1]%	%	comp[1,1]	   is the complexity of the model being identified%	training_set[no_data,no_var+1]	  the first no_var columns are the%				        inputs, the last one is the output%%	The following global variable are required:                     %		memb_fun:	'gaussian'/'triangular'                % 		arch:		'weigthed'/'comb'                      %		format_out:	'linear'/'constant'                       %		init: 		'k_mean'/'hfc'%		fid_h%______________________________________________________10 April 1996____global memb_funglobal archglobal format_outglobal initglobal fid_h%Initialization:[centers,bases]=eval([init '(comp,training_set)']);%Optimization:termination=0;old_SSE=1e+10;k=0.005;[no_data,c]=size(training_set);in_trn=training_set(:,1:c-1);out_trn=training_set(:,c);while (termination <2)					% INVERSION to determine the parameters of the CONSEQUENTS		if strcmp(format_out,'constant')			[SSE,new_par,bias]=inv_co(in_trn,centers,bases,out_trn);		end		if strcmp(format_out,'linear')			[SSE,new_par,bias]=inv_li(in_trn,centers,bases,out_trn);		end						if (SSE/old_SSE >1-k)			termination=termination+1;		end				if isnan(SSE)			break;		end		par=new_par;		fprintf(fid_h,'\t\t\t\tConsequents optimization. SSE=%g\n',SSE);		old_SSE=SSE;				% LEVENBERG-MARQUARDT to determine the CENTERS and the BASES		[centers,bases]=leve_mao(in_trn,centers,bases,par,bias,out_trn);end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -