⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fuz_aux.m

📁 The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB lan
💻 M
字号:
function fuz_aux(pr,arg2,arg3,arg4,arg5,arg6)global modelglobal memb_funglobal model_biasglobal archglobal format_outglobal initglobal no_setsglobal fid_hglobal file_eglobal mod_idglobal mod_pathglobal mhist_idglobal mhist_pathglobal err_idglobal err_pathglobal ehist_idglobal ehist_pathglobal pred_idglobal pred_pathglobal memo_idglobal memo_pathif nargin==3	comp=arg2;	data=arg3;elseif nargin==4	comp_min=arg2;	comp_max=arg3;	data=arg4;elseif nargin==6	centers=arg2;	bases=arg3;	par=arg4;	bias=arg5;	inputs=arg6;endmodel='fuz';fprintf('FIS is working...\n');if strcmp(pr,'comp_err')	fid_h=fopen([ehist_path,ehist_id],'w');	file_e=[err_path, err_id];	valid='x_valid';	[errors]=eval([valid '(data,comp_min,comp_max)']);	fclose(fid_h);	err_mean=mean(errors);	err_std=std(errors);	figure,	errorbar(comp_min:comp_max,err_mean,err_std);	fid_memo=fopen([memo_path,memo_id],'w');	fprintf(fid_memo,'FUZZY INFERENCE SYSTEM memo:\n');		fprintf(fid_memo,'Number of rules vs Mean Square Error\n');		      	fprintf(fid_memo,'\nNumber of cross validation sets:__________________%g',no_sets);				fprintf(fid_memo,'\nShape of the membership functions:________________');			fprintf(fid_memo,memb_fun);		fprintf(fid_memo,'\nOutput of each local model:_______________________');				fprintf(fid_memo,format_out);		fprintf(fid_memo,'\nArchitecture of the fuzzy model:__________________');			fprintf(fid_memo,arch);	fprintf(fid_memo,'\nInitialization:___________________________________');			fprintf(fid_memo,init);			fprintf(fid_memo,'\nBias vs No-Bias:__________________________________');			fprintf(fid_memo,model_bias);	fprintf(fid_memo,'\nMinimun Number of Rules:__________________________%g',comp_min);		fprintf(fid_memo,'\nMaximum Number of Rules:__________________________%g',comp_max);,			fprintf(fid_memo,'\nThe matrix errors vs complexity has been saved in the file:\n\t');			fwrite(fid_memo,[err_path,err_id],'char');							fprintf(fid_memo,'\nThe diary of the computation has been saved in the file:\n\t');			fwrite(fid_memo,[ehist_path,ehist_id],'char');	fclose(fid_memo); elseif strcmp(pr,'one_mod')	fid_h=fopen([mhist_path,mhist_id],'w');	[centers,bases,par,bias]=fuz_id(comp,data);	fclose(fid_h);	eval(['save ',mod_path,mod_id,' centers bases par bias ',...		'memb_fun model_bias arch format_out']);	fid_memo=fopen([memo_path,memo_id],'w');	fprintf(fid_memo,'FUZZY INFERENCE SYSTEM memo:\n');				      			fprintf(fid_memo,'\nShape of the membership functions:________________');			fprintf(fid_memo,memb_fun);		fprintf(fid_memo,'\nOutput of each local model:_______________________');				fprintf(fid_memo,format_out);		fprintf(fid_memo,'\nArchitecture of the fuzzy model:__________________');			fprintf(fid_memo,arch);	fprintf(fid_memo,'\nInitialization:___________________________________');			fprintf(fid_memo,init);,			fprintf(fid_memo,'\nBias vs No-Bias:__________________________________');			fprintf(fid_memo,model_bias);	fprintf(fid_memo,'\nNumber of Rules:__________________________________%g',comp);			fprintf(fid_memo,'\nThe trained model has been saved in the file:\n\t');			fwrite(fid_memo,[mod_path,mod_id],'char');								fprintf(fid_memo,'\nThe diary of the computation has been saved in the file:\n\t');			fwrite(fid_memo,[mhist_path,mhist_id],'char');		fclose(fid_memo);elseif strcmp(pr,'evaluate')	out_hat=fuz_mod(inputs,centers,bases,par,bias);	eval(['save ',pred_path,pred_id,' out_hat']);	fid_memo=fopen([memo_path,memo_id],'w');	fprintf(fid_memo,'FUZZY INFERENCE SYSTEM memo:\n');		      			fprintf(fid_memo,'\nShape of the membership functions:________________');			fprintf(fid_memo,memb_fun);		fprintf(fid_memo,'\nOutput of each local model:_______________________');				fprintf(fid_memo,format_out);		fprintf(fid_memo,'\nArchitecture of the fuzzy model:__________________');			fprintf(fid_memo,arch);	fprintf(fid_memo,'\nBias vs No-Bias:__________________________________');			fprintf(fid_memo,model_bias);	fprintf(fid_memo,'\nNumber of Rules:__________________________________%g',size(centers,1));	fprintf(fid_memo,'\nThe predicted output has been saved in the file:\n\t');			fwrite(fid_memo,[pred_path,pred_id],'char');							endfprintf('Done.\n\n');eval(['type ', memo_path, memo_id]);fprintf('\n');return%________________________________________________________

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -