📄 sfun.java
字号:
/**
* Returns the cotangent of a double.
* @param x A double value.
* @return The cotangent of x.
* If x is NaN, the result is NaN.
*/
static public double cot(double x)
{
double ans, ainty, ainty2, prodbg, y, yrem;
double pi2rec = 0.011619772367581343075535053490057; // 2/PI - 0.625
y = Math.abs(x);
if (y > 4.5036e+15) {
// 4.5036e+15 = 1.0/EPSILON_LARGE
return Double.NaN;
}
// Carefully compute
// Y * (2/PI) = (AINT(Y) + REM(Y)) * (.625 + PI2REC)
// = AINT(.625*Y) + REM(.625*Y) + Y*PI2REC = AINT(.625*Y) + Z
// = AINT(.625*Y) + AINT(Z) + REM(Z)
ainty = (int)y;
yrem = y - ainty;
prodbg = 0.625*ainty;
ainty = (int)prodbg;
y = (prodbg-ainty) + 0.625*yrem + y*pi2rec;
ainty2 = (int)y;
ainty = ainty + ainty2;
y = y - ainty2;
int ifn = (int)(ainty%2.0);
if (ifn == 1) y = 1.0 - y;
if (y == 0.0) {
ans = Double.POSITIVE_INFINITY;
} else if (y <= 1.82501e-08) {
// 1.82501e-08 = Math.sqrt(3.0*EPSILON_SMALL)
ans = 1.0/y;
} else if (y <= 0.25) {
ans = (0.5+csevl(32.0*y*y-1.0,COT_COEF))/y;
} else if (y <= 0.5) {
ans = (0.5+csevl(8.0*y*y-1.0,COT_COEF))/(0.5*y);
ans = (ans*ans-1.0)*0.5/ans;
} else {
ans = (0.5+csevl(2.0*y*y-1.0,COT_COEF))/(0.25*y);
ans = (ans*ans-1.0)*0.5/ans;
ans = (ans*ans-1.0)*0.5/ans;
}
if (x != 0.0) ans = sign(ans,x);
if (ifn == 1) ans = -ans;
return ans;
}
/*
* Evaluate a Chebyschev series
*/
static double csevl(double x, double coef[])
{
double b0, b1, b2, twox;
int i;
b1 = 0.0;
b0 = 0.0;
b2 = 0.0;
twox = 2.0*x;
for (i = coef.length-1; i >= 0; i--) {
b2 = b1;
b1 = b0;
b0 = twox*b1 - b2 + coef[i];
}
return 0.5*(b0-b2);
}
/*
* Correction term used by logBeta.
*/
private static double dlnrel(double x)
{
double ans;
if (x <= -1.0) {
ans = Double.NaN;
} else if (Math.abs(x) <= 0.375) {
ans = x*(1.0 - x*Sfun.csevl(x/.375, ALNRCS_COEF));
} else {
ans = Math.log(1.0 + x);
}
return ans;
}
/**
* Returns the error function of a double.
* @param x A double value.
* @return The error function of x.
*/
static public double erf(double x)
{
double ans;
double y = Math.abs(x);
if (y <= 1.49012e-08) {
// 1.49012e-08 = Math.sqrt(2*EPSILON_SMALL)
ans = 2 * x / 1.77245385090551602729816748334;
} else if (y <= 1) {
ans = x * (1 + csevl(2 * x * x - 1, ERFC_COEF));
} else if (y < 6.013687357) {
// 6.013687357 = Math.sqrt(-Math.log(1.77245385090551602729816748334 * EPSILON_SMALL))
ans = sign(1 - erfc(y), x);
} else {
ans = sign(1, x);
}
return ans;
}
/**
* Returns the complementary error function of a double.
* @param x A double value.
* @return The complementary error function of x.
*/
static public double erfc(double x)
{
double ans;
double y = Math.abs(x);
if (x <= -6.013687357) {
// -6.013687357 = -Math.sqrt(-Math.log(1.77245385090551602729816748334 * EPSILON_SMALL))
ans = 2;
} else if (y < 1.49012e-08) {
// 1.49012e-08 = Math.sqrt(2*EPSILON_SMALL)
ans = 1 - 2*x/1.77245385090551602729816748334;
} else {
double ysq = y*y;
if (y < 1) {
ans = 1 - x*(1+csevl(2*ysq-1,ERFC_COEF));
} else if (y <= 4.0) {
ans = Math.exp(-ysq)/y*(0.5+csevl((8.0/ysq-5.0)/3.0,ERFC2_COEF));
if (x < 0) ans = 2.0 - ans;if (x < 0) ans = 2.0 - ans;
if (x < 0) ans = 2.0 - ans;
} else {
ans = Math.exp(-ysq)/y*(0.5+csevl(8.0/ysq-1,ERFCC_COEF));
if (x < 0) ans = 2.0 - ans;
}
}
return ans;
}
/**
* Returns the factorial of an integer.
* @param n An integer value.
* @return The factorial of n, n!.
* If x is negative, the result is NaN.
*/
static public double fact(int n)
{
double ans = 1;
if (Double.isNaN(n) || n < 0) {
ans = Double.NaN;
} else if (n > 170) {
// The 171! is too large to fit in a double.
ans = Double.POSITIVE_INFINITY;
} else {
for (int k = 2; k <= n; k++)
ans *= k;
}
return ans;
}
/**
* Returns the Gamma function of a double.
* @param x A double value.
* @return The Gamma function of x.
* If x is a negative integer, the result is NaN.
*/
static public double gamma(double x)
{
double ans;
double y = Math.abs(x);
if (y <= 10.0) {
/*
* Compute gamma(x) for |x|<=10.
* First reduce the interval and find gamma(1+y) for 0 <= y < 1.
*/
int n = (int)x;
if (x < 0.0) n--;
y = x - n;
n--;
ans = 0.9375 + csevl(2.0*y-1.0, GAMMA_COEF);
if (n == 0) {
} else if (n < 0) {
// Compute gamma(x) for x < 1
n = -n;
if (x == 0.0) {
ans = Double.NaN;
} else if (y < 1.0/Double.MAX_VALUE) {
ans = Double.POSITIVE_INFINITY;
} else {
double xn = n - 2;
if (x < 0.0 && x + xn == 0.0) {
ans = Double.NaN;
} else {
for (int i = 0; i < n; i++) {
ans /= x + i;
}
}
}
} else { // gamma(x) for x >= 2.0
for (int i = 1; i <= n; i++) {
ans *= y + i;
}
}
} else { // gamma(x) for |x| > 10
if (x > 171.614) {
ans = Double.POSITIVE_INFINITY;
} else if (x < -170.56) {
ans = 0.0; // underflows
} else {
// 0.9189385332046727 = 0.5*log(2*PI)
ans = Math.exp((y-0.5)*Math.log(y)-y+0.9189385332046727+r9lgmc(y));
if (x < 0.0) {
double sinpiy = Math.sin(Math.PI * y);
if (sinpiy == 0 || Math.round(y) == y) {
ans = Double.NaN;
} else {
ans = -Math.PI / (y * sinpiy * ans);
}
}
}
}
return ans;
}
/**
* Returns the common (base 10) logarithm of a double.
* @param x A double value.
* @return The common logarithm of x.
*/
static public double log10(double x)
{
//if (Double.isNaN(x)) return Double.NaN;
return 0.43429448190325182765*Math.log(x);
}
/**
* Returns the logarithm of the Beta function.
* @param a A double value.
* @param b A double value.
* @return The natural logarithm of the Beta function.
*/
static public double logBeta(double a, double b)
{
double corr, ans;
double p = Math.min(a, b);
double q = Math.max(a, b);
if (p <= 0.0) {
ans = Double.NaN;
} else if (p >= 10.0) {
// P and Q are large;
corr = r9lgmc(p) + r9lgmc(q) - r9lgmc(p+q);
double temp = dlnrel(-p/(p+q));
ans = -0.5*Math.log(q) + 0.918938533204672741780329736406 + corr + (p-0.5)*Math.log(p/(p+q)) + q*temp;
} else if (q >= 10.0) {
// P is small, but Q is large
corr = Sfun.r9lgmc(q) - r9lgmc(p+q);
// Check from underflow from r9lgmc
ans = logGamma(p) + corr + p - p*Math.log(p+q) + (q-0.5)*dlnrel(-p/(p+q));
} else {
// P and Q are small;
ans = Math.log(gamma(p)*(gamma(q)/gamma(p+q)));
}
return ans;
}
/**
* Returns the logarithm of the Gamma function of a double.
* @param x A double value.
* @return The natural logarithm of the Gamma function of x.
* If x is a negative integer, the result is NaN.
*/
static public double logGamma(double x)
{
double ans, sinpiy, y;
y = Math.abs(x);
if (y <= 10) {
ans = Math.log(Math.abs(gamma(x)));
} else if (x > 0) {
// A&S 6.1.40
// 0.9189385332046727 = 0.5*log(2*PI)
ans = 0.9189385332046727 + (x-0.5)*Math.log(x) - x + r9lgmc(y);
} else {
sinpiy = Math.abs(Math.sin(Math.PI * y));
if (sinpiy == 0 || Math.round(y) == y) {
// The argument for the function can not be a negative integer.
ans = Double.NaN;
} else {
ans = 0.22579135264472743236 + (x-0.5)*Math.log(y) - x - Math.log(sinpiy) - r9lgmc(y);
}
}
return ans;
}
/*
* Returns the log gamma correction term for argument
* values greater than or equal to 10.0.
*/
static double r9lgmc(double x)
{
double ans;
if (x < 10.0) {
ans = Double.NaN;
} else if (x < 9.490626562e+07) {
// 9.490626562e+07 = 1/Math.sqrt(EPSILON_SMALL)
double y = 10.0/x;
ans = csevl(2.0*y*y-1.0, R9LGMC_COEF) / x;
} else if (x < 1.39118e+11) {
// 1.39118e+11 = exp(min(log(amach(2) / 12.0), -log(12.0 * amach(1))));
// See A&S 6.1.41
ans = 1.0/(12.0*x);
} else {
ans = 0.0; // underflows
}
return ans;
}
/*
* Returns the value of x with the sign of y.
*/
static private double sign(double x, double y)
{
double abs_x = ((x < 0) ? -x : x);
return (y < 0.0) ? -abs_x : abs_x;
}
/**
* Returns the inverse (arc) hyperbolic sine of a double.
* @param x A double value.
* @return The arc hyperbolic sine of x.
* If x is NaN or less than one, the result is NaN.
*/
static public double sinh(double x)
{
double ans;
double y = Math.abs(x);
if (Double.isNaN(x)) {
ans = Double.NaN;
} else if (Double.isInfinite(y)) {
return x;
} else if (y < 2.58096e-08) {
// 2.58096e-08 = Math.sqrt(6.0*EPSILON_SMALL)
ans = x;
} else if (y <= 1.0) {
ans = x*(1.0+csevl(2.0*x*x-1.0,SINH_COEF));
} else {
y = Math.exp(y);
if (y >= 94906265.62) {
// 94906265.62 = 1.0/Math.sqrt(EPSILON_SMALL)
ans = sign(0.5*y,x);
} else {
ans = sign(0.5*(y-1.0/y),x);
}
}
return ans;
}
/**
* Returns the hyperbolic tangent of a double.
* @param x A double value.
* @return The hyperbolic tangent of x.
*/
static public double tanh(double x)
{
double ans, y;
y = Math.abs(x);
if (Double.isNaN(x)) {
ans = Double.NaN;
} else if (y < 1.82501e-08) {
// 1.82501e-08 = Math.sqrt(3.0*EPSILON_SMALL)
ans = x;
} else if (y <= 1.0) {
ans = x*(1.0+csevl(2.0*x*x-1.0,TANH_COEF));
} else if (y < 7.977294885) {
// 7.977294885 = -0.5*Math.log(EPSILON_SMALL)
y = Math.exp(y);
ans = sign((y-1.0/y)/(y+1.0/y),x);
} else {
ans = sign(1.0,x);
}
return ans;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -