⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compgshf.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE CompGShf.cc.   Example program that illustrates how to solve a complex   generalized eigenvalue problem in shift and invert mode    using the ARCompGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in shift and      invert mode, where A and B are derived from a finite element       discretization of a 1-dimensional convection-diffusion operator                         (d^2u/dx^2) + rho*(du/dx)      on the interval [0,1] with zero boundary conditions using       piecewise linear elements.   2) Data structure used to represent matrix A:      When using ARCompGenEig, the user is required to provide some       classes that contain as member functions the matrix-vector      products w = OP*Bv = inv(A-sigma*B)*B*v and w = B*v.       In this example, ComplexGenProblemB is a class that contains two       member functions, MultOPv and MultBv. The first takes a vector v       and returns the product OPv. The second performs the product Bv.   3) Included header files:      File             Contents      -----------      -------------------------------------------      cgenprbb.h       The ComplexGenProblemB class definition.      argcomp.h        The ARCompGenEig class definition.      compgsl.h        The Solution function.      arcomp.h         The "arcomplex" (complex) type definition.   4) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "arcomp.h"#include "cgenprbb.h"#include "compgsol.h"#include "argcomp.h"template<class T>void Test(T type){  // Creating a complex problem with n = 100, rho = 10, sigma = 1.  ComplexGenProblemB<T>    P(100, arcomplex<T>(10.0,0.0), arcomplex<T>(1.0,0.0));  // Defining what we need: the four eigenvectors nearest to sigma.  // P.MultOPv is the function that performs the product w <- OPv.  // P.MultBv is the function that performs the product w <- Bv.  ARCompGenEig<T, ComplexGenProblemB<T>, ComplexGenProblemB<T> >    dprob(P.A.ncols(), 4, &P, &ComplexGenProblemB<T>::MultOPv, &P,          &ComplexGenProblemB<T>::MultBv, arcomplex<T>(1.0,0.0));  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(P.A, P.B, dprob);} // Test.main(){  // Solving a single precision problem with n = 100.#ifndef __SUNPRO_CC  Test((float)0.0);#endif  // Solving a double precision problem with n = 100.  Test((double)0.0);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -