📄 symshft.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE SymShft.cc. Example program that illustrates how to solve a real symmetric standard eigenvalue problem in shift and invert mode using the ARSymStdEig class. 1) Problem description: In this example we try to solve A*x = x*lambda in shift and invert mode, where A is derived from the central difference discretization of the 1-dimensional Laplacian on [0,1] with zero Dirichlet boundary conditions. 2) Data structure used to represent matrix A: When using ARSymStdEig, the user is required to provide a class that contains a member function which computes the matrix-vector product w = OPv, where OP = inv[A - sigma*I]. In this example, this class is called SymMatrixB, and MultOPv is the function. 3) Included header files: File Contents ----------- ------------------------------------------- smatrixb.h The SymMatrixB class definition. arssym.h The ARSymStdEig class definition. symsol.h The Solution function. 4) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "arssym.h"#include "smatrixb.h"#include "symsol.h"template<class T>void Test(T type){ // Creating a symmetric matrix. SymMatrixB<T> A(100,0.0); // n = 100, shift = 0.0. // Defining what we need: the four eigenvectors of B nearest to 0.0. // A.MultOPv is the function that performs the product w <- OPv. ARSymStdEig<T, SymMatrixB<T> > dprob(A.ncols(), 4, &A, &SymMatrixB<T>::MultOPv, 0.0); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, dprob);} // Test.main(){ // Solving a double precision problem with n = 100. Test((double)0.0); // Solving a single precision problem with n = 100. Test((float)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -