📄 nsymreg.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE NSymReg.cc. Example program that illustrates how to solve a real nonsymmetric standard eigenvalue problem in regular mode using the ARNonSymStdEig class. 1) Problem description: In this example we try to solve A*x = x*lambda in regular mode, where A is obtained from the standard central difference discretization of the convection-diffusion operator (Laplacian u) + rho*(du / dx) on the unit square [0,1]x[0,1] with zero Dirichlet boundary conditions. 2) Data structure used to represent matrix A: When using ARNonSymStdEig, the user is required to provide a class that contains a member function which computes the the matrix-vector product w = Av. In this example, this class is called NonSymMatrixA, and MultMv is the function. 3) Included header files: File Contents ----------- ------------------------------------------- nmatrixa.h The NonSymMatrixA class definition. arsnsym.h The ARNonSymStdEig class definition. nsymsol.h The Solution function. 4) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "nmatrixa.h"#include "nsymsol.h"#include "arsnsym.h"template<class T>void Test(T type){ // Creating a nonsymetric matrix. NonSymMatrixA<T> A(10); // n = 10*10. // Defining what we need: the four eigenvectors of A with largest magnitude. // A.MultMv is the function that performs the product w <- A.v. ARNonSymStdEig<T, NonSymMatrixA<T> > dprob(A.ncols(), 4, &A, &NonSymMatrixA<T>::MultMv); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, dprob);} // Test.main(){ // Solving a single precision problem with n = 100. Test((float)0.0); // Solving a double precision problem with n = 100. Test((double)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -