⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsymgcay.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE DSymGCay.cc.   Example program that illustrates how to solve a real    symmetric dense generalized eigenvalue problem in Cayley    mode using the ARluSymGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in Cayley      mode, where A is the one dimensional discrete Laplacian on      the interval [0, 1], with zero Dirichlet boundary conditions,       and B is the mass matrix formed by using piecewise linear       elements on [0, 1].   2) Data structure used to represent matrices A and B:      Although A and B are very sparse in this example, they are       stored here as dense symmetric matrices. The lower triangular       part of A snd B is stored, by columns, in vectors A and B.   3) Library called by this example:      The LAPACK package is called by ARluSymGenEig to solve      some linear systems involving (A-sigma*B).   4) Included header files:      File             Contents      -----------      -------------------------------------------      dsmatrxb.h       DenseMatrixB, a function that generates                       matrix A.      dsmatrxc.h       DenseMatrixC, a function that generates                        matrix B.      ardsmat.h        The ARdsSymMatrix class definition.      ardgsym.h        The ARluSymGenEig class definition.      lsymsol.h        The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "dsmatrxb.h"#include "dsmatrxc.h"#include "ardsmat.h"#include "ardgsym.h"#include "lsymsol.h"main(){  // Defining variables;  int     n;       // Dimension of the problem.  double* valA;    // pointer to an array that stores the elements of A.  double* valB;    // pointer to an array that stores the elements of B.  // Creating matrices A and B.  n = 100;  DenseMatrixB(n, valA, 'U');  ARdsSymMatrix<double> A(n, valA, 'U');  DenseMatrixC(n, valB, 'L');  ARdsSymMatrix<double> B(n, valB, 'L');  // Defining what we need: the four eigenvectors nearest to 150.0.  ARluSymGenEig<double> dprob('C', 4L, A, B, 150.0);  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(A, B, dprob);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -