⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsymshf.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE DSymShf.cc.   Example program that illustrates how to solve a real symmetric   dense standard eigenvalue problem in shift and invert mode using    the ARluSymStdEig class.   1) Problem description:      In this example we try to solve A*x = x*lambda in shift and        invert mode, where A is derived from the standard central       difference discretization of the 2-dimensional Laplacian on       the unit square with zero Dirichlet boundary conditions.   2) Data structure used to represent matrix A:      Although A is very sparse in this example, it is stored      here as a dense symmetric matrix. The lower triangular part      of A is stored, by columns, in the vector A.   3) Library called by this example:      The LAPACK package is called by ARluSymStdEig to solve      some linear systems involving (A-sigma*I). This is needed to      implement the shift and invert strategy.   4) Included header files:      File             Contents      -----------      --------------------------------------------      dsmatrxa.h       DenseMatrixA, a function that generates                       matrix A.      ardsmat.h        The ARdsSymMatrix class definition.      ardssym.h        The ARluSymStdEig class definition.      lsymsol.h        The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "dsmatrxa.h"#include "ardsmat.h"#include "ardssym.h"#include "lsymsol.h"main(){  // Defining variables;  int     nx;  int     n;       // Dimension of the problem.  double* A;       // Pointer to an array that stores the elements of A.  // Creating a 100x100 matrix.  nx  = 10;  DenseMatrixA(nx, n, A);  ARdsSymMatrix<double> matrix(n, A);  // Defining what we need: the four eigenvectors of A nearest to 1.0.  ARluSymStdEig<double> dprob(4L, matrix, 1.0);  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(matrix, dprob);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -