📄 rsymshf.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE RSymShf.cc. Example program that illustrates how to solve a real symmetric standard eigenvalue problem in shift and invert mode using the ARrcSymStdEig class. 1) Problem description: In this example we try to solve A*x = x*lambda in shift and invert mode, where A is derived from the central difference discretization of the 1-dimensional Laplacian on [0,1] with zero Dirichlet boundary conditions. 2) Data structure used to represent matrix A: class ARrcSymStdEig requires the user to provide a way to perform the matrix-vector product w = OPv, where OP = inv[A - sigma*I]. In this example a class called SymMatrixB was created with this purpose. SymMatrixB contains a member function, MultOPv, that takes a vector v and returns the product OPv in w. 3) The reverse communication interface: This example uses the reverse communication interface, which means that the desired eigenvalues cannot be obtained directly from an ARPACK++ class. Here, the overall process of finding eigenvalues by using the Arnoldi method is splitted into two parts. In the first, a sequence of calls to a function called TakeStep is combined with matrix-vector products in order to find an Arnoldi basis. In the second part, an ARPACK++ function like FindEigenvectors (or EigenValVectors) is used to extract eigenvalues and eigenvectors. 4) Included header files: File Contents ----------- ------------------------------------------- smatrixb.h The SymMatrixB class definition. arrssym.h The ARrcSymStdEig class definition. rsymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "arrssym.h"#include "smatrixb.h"#include "rsymsol.h"template<class T>void Test(T type){ // Creating a symmetric matrix. SymMatrixB<T> B(100,0.0); // n = 100, shift = 0.0. // Creating a symmetric eigenvalue problem and defining what we need: // the four eigenvectors of B nearest to 0.0. ARrcSymStdEig<T> prob(B.ncols(), 4, (T)0.0); // Finding an Arnoldi basis. while (!prob.ArnoldiBasisFound()) { // Calling ARPACK FORTRAN code. Almost all work needed to // find an Arnoldi basis is performed by TakeStep. prob.TakeStep(); if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) { // Performing matrix-vector multiplication. // In shift and invert mode, w = OPv must be performed // whenever GetIdo is equal to 1 or -1. GetVector supplies // a pointer to the input vector, v, and PutVector a pointer // to the output vector, w. B.MultOPv(prob.GetVector(), prob.PutVector()); } } // Finding eigenvalues and eigenvectors. prob.FindEigenvectors(); // Printing solution. Solution(prob);} // Test.main(){ // Solving a double precision problem with n = 100. Test((double)0.0); // Solving a single precision problem with n = 100. Test((float)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -