📄 rsymgcay.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE RSymGCay.cc. Example program that illustrates how to solve a real symmetric generalized eigenvalue problem in Cayley mode using the ARrcSymGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in Cayley mode, where A and B are obtained from the finite element discretrization of the 1-dimensional discrete Laplacian d^2u / dx^2 on the interval [0,1] with zero Dirichlet boundary conditions using piecewise linear elements. 2) Data structure used to represent matrices A and B: ARrcSymGenEig is a class that requires the user to provide a way to perform the matrix-vector products w = OPv = inv(A-sigma*B)*v, w = A*v and w = B*v, where sigma is the adopted shift. In this example a class called SymGenProblemB was created with this purpose. SymGenProblemB contains a member function, MultOPv(v,w), that takes a vector v and returns the product OPv in w. It also contains two objects, A and B, that store matrices A and B, respectively. The product Bv is performed by MultMv, a member function of B, and Av is obtained by calling A.MultMv. 3) The reverse communication interface: This example uses the reverse communication interface, which means that the desired eigenvalues cannot be obtained directly from an ARPACK++ class. Here, the overall process of finding eigenvalues by using the Arnoldi method is splitted into two parts. In the first, a sequence of calls to a function called TakeStep is combined with matrix-vector products in order to find an Arnoldi basis. In the second part, an ARPACK++ function like FindEigenvectors (or EigenValVectors) is used to extract eigenvalues and eigenvectors. 4) Included header files: File Contents ----------- ------------------------------------------- sgenprbb.h The SymGenProblemB class definition. arrgsym.h The ARrcSymGenEig class definition. rsymgsol.h The Solution function. blas1c.h Some blas1 functions. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "blas1c.h"#include "sgenprbb.h"#include "rsymgsol.h"#include "arrgsym.h"template<class T>void Test(T type){ // Defining two temporary vectors. T tempA[101], tempB[101]; // Creating a pencil. SymGenProblemB<T> P(100, 150.0); // Creating a symmetric eigenvalue problem. 'S' indicates that // we will use the shift and invert mode. P.A.ncols() furnishes // the dimension of the problem. 4 is the number of eigenvalues // sought and 150.0 is the shift. ARrcSymGenEig<T> prob('C', P.A.ncols(), 4L, 150.0); // Finding an Arnoldi basis. while (!prob.ArnoldiBasisFound()) { // Calling ARPACK FORTRAN code. Almost all work needed to // find an Arnoldi basis is performed by TakeStep. prob.TakeStep(); switch (prob.GetIdo()) { case -1: // Performing w <- OP*(A+sigma*B)*v for the first time. // This product must be performed only if GetIdo is equal to // -1. GetVector supplies a pointer to the input vector, v, // and PutVector a pointer to the output vector, w. P.A.MultMv(prob.GetVector(), tempA); P.B.MultMv(prob.GetVector(), tempB); axpy(P.A.ncols(), prob.GetShift(), tempB, 1, tempA, 1); P.MultOPv(tempA, prob.PutVector()); break; case 1: // Performing w <- OP*(A+sigma*B)*v when Bv is available. // This product must be performed whenever GetIdo is equal to // 1. GetProd supplies a pointer to the previously calculated // product Bv, GetVector a pointer to the input vector, v, // and PutVector a pointer to the output vector, w. P.A.MultMv(prob.GetVector(), tempA); axpy(P.A.ncols(), prob.GetShift(), prob.GetProd(), 1, tempA, 1); P.MultOPv(tempA, prob.PutVector()); break; case 2: // Performing w <- B*v. P.B.MultMv(prob.GetVector(), prob.PutVector()); } } // Finding eigenvalues and eigenvectors. prob.FindEigenvectors(); // Printing solution. Solution(prob);} // Test.main(){ // Solving a double precision problem with n = 100. Test((double)0.0); // Solving a single precision problem with n = 100. Test((float)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -