⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsymgcay.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE RSymGCay.cc.   Example program that illustrates how to solve a real symmetric   generalized eigenvalue problem in Cayley mode using the   ARrcSymGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in Cayley mode,      where A and B are obtained from the finite element      discretrization of the 1-dimensional discrete Laplacian                                d^2u / dx^2      on the interval [0,1] with zero Dirichlet boundary conditions      using piecewise linear elements.   2) Data structure used to represent matrices A and B:      ARrcSymGenEig is a class that requires the user to provide a      way to perform the matrix-vector products w = OPv =      inv(A-sigma*B)*v, w = A*v and w = B*v, where sigma is the      adopted shift. In this example a class called SymGenProblemB was      created with this purpose. SymGenProblemB contains a member      function, MultOPv(v,w), that takes a vector v and returns the      product OPv in w. It also contains two objects, A and B, that      store matrices A and B, respectively. The product Bv is      performed by MultMv, a member function of B, and Av is obtained      by calling A.MultMv.   3) The reverse communication interface:      This example uses the reverse communication interface, which      means that the desired eigenvalues cannot be obtained directly      from an ARPACK++ class.      Here, the overall process of finding eigenvalues by using the      Arnoldi method is splitted into two parts. In the first, a      sequence of calls to a function called TakeStep is combined      with matrix-vector products in order to find an Arnoldi basis.      In the second part, an ARPACK++ function like FindEigenvectors      (or EigenValVectors) is used to extract eigenvalues and      eigenvectors.   4) Included header files:      File             Contents      -----------      -------------------------------------------      sgenprbb.h       The SymGenProblemB class definition.      arrgsym.h        The ARrcSymGenEig class definition.      rsymgsol.h       The Solution function.      blas1c.h         Some blas1 functions.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "blas1c.h"#include "sgenprbb.h"#include "rsymgsol.h"#include "arrgsym.h"template<class T>void Test(T type){  // Defining two temporary vectors.  T tempA[101], tempB[101];  // Creating a pencil.  SymGenProblemB<T> P(100, 150.0);  // Creating a symmetric eigenvalue problem. 'S' indicates that  // we will use the shift and invert mode. P.A.ncols() furnishes  // the dimension of the problem. 4 is the number of eigenvalues  // sought and 150.0 is the shift.  ARrcSymGenEig<T> prob('C', P.A.ncols(), 4L, 150.0);  // Finding an Arnoldi basis.  while (!prob.ArnoldiBasisFound()) {    // Calling ARPACK FORTRAN code. Almost all work needed to    // find an Arnoldi basis is performed by TakeStep.    prob.TakeStep();    switch (prob.GetIdo()) {    case -1:      // Performing w <- OP*(A+sigma*B)*v for the first time.      // This product must be performed only if GetIdo is equal to      // -1. GetVector supplies a pointer to the input vector, v,      // and PutVector a pointer to the output vector, w.      P.A.MultMv(prob.GetVector(), tempA);      P.B.MultMv(prob.GetVector(), tempB);      axpy(P.A.ncols(), prob.GetShift(), tempB, 1, tempA, 1);      P.MultOPv(tempA, prob.PutVector());      break;    case  1:      // Performing w <- OP*(A+sigma*B)*v when Bv is available.      // This product must be performed whenever GetIdo is equal to      // 1. GetProd supplies a pointer to the previously calculated      // product Bv, GetVector a pointer to the input vector, v,      // and PutVector a pointer to the output vector, w.      P.A.MultMv(prob.GetVector(), tempA);      axpy(P.A.ncols(), prob.GetShift(), prob.GetProd(), 1, tempA, 1);      P.MultOPv(tempA, prob.PutVector());      break;    case  2:      // Performing w <- B*v.      P.B.MultMv(prob.GetVector(), prob.PutVector());    }  }  // Finding eigenvalues and eigenvectors.  prob.FindEigenvectors();  // Printing solution.  Solution(prob);} // Test.main(){  // Solving a double precision problem with n = 100.  Test((double)0.0);  // Solving a single precision problem with n = 100.  Test((float)0.0);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -